Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.
Answer:
The volume at the surface is 10.97 L.
Explanation:
Given that,
Volume = 5.5 L
Height = 10 m
Density of sea water= 1025 kg/m³
We need to calculate the pressure at that point
Using formula of pressure

Put the value into the formula


We need to calculate the volume at the surface
Using equation of ideal gas

So, for both condition

Put the value into the formula


Hence, The volume at the surface is 10.97 L.
Find the force that would be required in the absence of friction first, then calculate the force of friction and add them together. This is done because the friction force is going to have to be compensated for. We will need that much more force than we otherwise would to achieve the desired acceleration:

The friction force will be given by the normal force times the coefficient of friction. Here the normal force is just its weight, mg

Now the total force required is:
0.0702N+0.803N=0.873N
Answer:
H = start height (v = 0)
h = present height
v = present speed
assuming no friction
total energy = PE + KE
mgH = mgh + .5mv^2
if PE = KE then
mgH = mgh + mgh
h = H/2
potential energy = kinetic energy when object is at half its start height.
Explanation:
A non <span>foliated </span>rock has interlocking grains with no specific pattern.