1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pentagon [3]
3 years ago
14

In a large centrifuge used for training pilots and astronauts, a small chamber is fixed at the end of a rigid arm that rotates i

n a horizontal circle. A trainee riding in the chamber of a centrifuge rotating with a constant angular speed of 1.7 rad/s experiences a centripetal acceleration of 3.2 times the acceleration due to gravity. In a second training exercise, the centrifuge speeds up from rest with a constant angular acceleration. When the centrifuge reaches an angular speed of 1.7 rad/s, the trainee experiences a total acceleration equal to 4.4 times the acceleration due to gravity.
(a) How long is the arm of the centrifuge?

(b) What is the angular acceleration in the second training exercise?
Physics
1 answer:
RSB [31]3 years ago
8 0

a) The length of the arm of the centrifuge is 10.9 m

b) The angular acceleration is 2.7 rad/s^2

Explanation:

a)

In a uniform circular motion, the centripetal acceleration is given by

a_c=\omega^2 r

where:

\omega is the angular speed of the circular motion

r is the radius of the circle

For the centrifuge in this problem, we have:

\omega=1.7 rad/s is the angular speed

The centripetal acceleration is 3.2 times the acceleration due to gravity (g=9.8 m/s^2), so:

a_c=3.2 g = 3.2(9.8)=31.4 m/s^2

Therefore, we can re-arrange the previous equation to find r, the radius of the circle (which corresponds to the length of the arm of the centrifuge):

r=\frac{a_c}{\omega^2}=\frac{31.4}{1.7^2}=10.9 m

b)

In the second part of the exercise, the centrifuge speeds up from an initial angular speed of 0 to a final angular speed of 1.7 rad/s. The total acceleration experienced at the final moment is

a=4.4 g

So, 4.4 times the acceleration due to gravity.

The total acceleration is the resultant of the centripetal acceleration (a_c) and the tangential acceleration (a_t):

a=\sqrt{a_c^2+a_t^2}

We know that:

a = 4.4g

a_c = 3.2 g

So, we can find the tangential acceleration:

a_t = \sqrt{a^2-a_c^2}=\sqrt{(4.4g)^2-(3.2g)^2}=29.6 m/s^2

The angular acceleration is related to the tangential acceleration by

\alpha = \frac{a_t}{r}

where r = 10.9 m is the length of the centrifuge. Substituting,

\alpha = \frac{29.6}{10.9}=2.7 rad/s^2

Learn more about centripetal and angular acceleration here:

brainly.com/question/2562955

brainly.com/question/9575487

brainly.com/question/9329700

brainly.com/question/2506028

#LearnwithBrainly

You might be interested in
Agustin visits Panama City, Florida, during the month of May. He feels a shore breeze blowing from theocean onto the beach. What
Pavel [41]

Answer: A.The ocean is colder than the land

Explanation:

Based on the information provided in the question, we are informed that Agustin visits Panama City, Florida, during the month of May and that he feels a shore breeze blowing from the ocean onto the beach.

The reason for the shore breeze is simply due to the fact that the ocean is colder than the land. Since the ocean is colder, anyone who goes to the beach will feel the breeze.

7 0
2 years ago
Lucia kicks a ball on a level playing field with an initial velocity of 11.3 m/s at an angle of 35° above the horizontal. Find:
grandymaker [24]

Explanation:

Given that,

Initial velocity, u = 11.3 m/s

Angle above the horizontal, \theta=35^{\circ}

Time of flight :

t=\dfrac{2u\sin\theta}{g}\\\\t=\dfrac{2\times 11.3\times \sin(35)}{9.8}\\\\t=1.32\ s

Horizontal distance traveled  is given by :

x = ut

x = 11.3 m/s × 1.32 s

x = 14.916 m

Maximum height is given by :

H=\dfrac{u^2\sin^2\theta}{2g}\\\\H=\dfrac{(11.3)^2\times \sin^2(35)}{2\times 9.8}\\\\H=2.14\ m

Hence, time of flight is 1.32 s, horizontal distance is 14.916 m and maximum height is 2.14 m.

6 0
2 years ago
A traditional unit of length in Japan is the ken (1ken =1.97 m) . What are the ratios of (a) square kens to a square meters? and
Law Incorporation [45]
4 . I hope I helped your welcome
6 0
3 years ago
the speed of travel of the moon around the earth, using the formula for the speed of a moving object in a circular path
Svetach [21]

Answer: 1018.26 m/s

Explanation:

Approaching the orbit of the Moon around the Earth to a circular orbit (or circular path), we can use the equation of the speed of an object with uniform circular motion:  

V=\sqrt{G\frac{M}{r}}

Where:  

V is the speed of travel of the Moon around the Earth

G=6.674(10)^{-11}\frac{m^{3}}{kgs^{2}} is the Gravitational Constant

M=5.972(10)^{24} kg is the mass of the Earth

r=384400(10)^{3} m is the distance from the center of the Earth to the center of the Moon

Solving:

V=\sqrt{6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}\frac{5.972(10)^{24} kg}{384400(10)^{3} m}}

V=1018.26 m/s This is the speed of travel of the Moon around the Earth

5 0
2 years ago
A person slaps her leg with her hand, which results in her hand coming to rest in a time interval of 2.65 ms from an initial spe
dezoksy [38]

Answer:

the magnitude of the average contact force exerted on the leg is  3466.98 N

Explanation:

Given the data in the question;

Initial velocity of hand v₀ = 5.25 m/s

final velocity of hand v = 0 m/s

time interval t = 2.65 ms = 0.00265 s

mass of hand m = 1.75 kg

We calculate force on the hand F_{hand

using equation for impulse in momentum

F_{hand × t = m( v - v₀ )

we substitute

F_{hand × 0.00265  = 1.75( 0 - 5.25 )

F_{hand × 0.00265  = 1.75( - 5.25 )

F_{hand × 0.00265  = -9.1875

F_{hand = -9.1875 / 0.00265  

F_{hand = -3466.98 N

Next we determine force on the leg F_{leg

Using Newton's third law of motion

for every action, there is an equal opposite reaction;

so, F_{leg = - F_{hand

we substitute

F_{leg = - ( -3466.98 N )

F_{leg = 3466.98 N

Therefore, the magnitude of the average contact force exerted on the leg is  3466.98 N

5 0
2 years ago
Other questions:
  • Which of the following describes a closed conducting loop through which an electrical current can flow?
    7·1 answer
  • Which of the following materials is an insulator against electric current
    7·2 answers
  • A box of books has _______inertia than a box of cotton balls.
    6·2 answers
  • How can you measure the distance an object has moved?
    11·1 answer
  • which of the following is not a type of cosmic radiation? gamma-rays, x-rays, sound waves, or cosmic rays​
    5·1 answer
  • The terminal velocity of a person falling in air depends upon the weight and the area of the person facing the fluid.
    5·1 answer
  • Use complete sentences to differentiate between acids and bases on the basis of their behavior when dissolved in water Give an e
    12·1 answer
  • Define limitations in the operation conditions of a pn junction<br>​
    7·1 answer
  • What is a homogeneous mixture in which particles never separate?
    12·1 answer
  • A bullet is fired from a rifle with an initial velocity of 300 m/s at an angle of 25 degrees from the horizontal.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!