To keep<span> noise from entering your space, look for </span>sound<span> blockers</span>
1.1 A. An electric oven with a resistance of 201Ω and a voltage of 220V drwa a current of 1.1 A.
The easiest way to solve this problem is using the Ohm's Law I = V/R.
An electric oven has R = 201Ω, and a drop of voltage V = 220v, solve using I = V/R:
I = 220V / 201Ω
I = 1.09 A ≅ 1.1 A
Answer:
The the speed of the car is 26.91 m/s.
Explanation:
Given that,
distance d = 88 m
Kinetic friction = 0.42
We need to calculate the the speed of the car
Using the work-energy principle
work done = change in kinetic energy



Put the value into the formula


Hence, The the speed of the car is 26.91 m/s.
Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
Answer:
The magnitude of the average force on the wall during the collision is 6 N.
Explanation:
Given;
mass of snowball, m = 120 g = 0.12 kg
velocity of the snowball, v = 7.5 m/s
duration of the collision between the snowball and the wall, t = 0.15 s
Magnitude of the average force can be calculated by applying Newton's second law of motion;
F = ma
where;
a is acceleration = v / t
a = 7.5 / 0.15
a = 50 m/s²
F = ma
F = 0.12 x 50
F = 6 N
Therefore, the magnitude of the average force on the wall during the collision is 6 N.