Answer:
15.35 g of (NH₄)₃PO₄
Explanation:
First we need to look at the chemical reaction:
3 NH₃ + H₃PO₄ → (NH₄)₃PO₄
Now we calculate the number of moles of ammonia (NH₃):
number of moles = mass / molecular wight
number of moles = 5.24 / 17 = 0.308 moles of NH₃
Now from the chemical reaction we devise the following reasoning:
if 3 moles of NH₃ are produce 1 mole of (NH₄)₃PO₄
then 0.308 moles of NH₃ are produce X moles of (NH₄)₃PO₄
X = (0.308 × 1) / 3 = 0.103 moles of (NH₄)₃PO₄
mass = number of moles × molecular wight
mass = 0.103 × 149 = 15.35 g of (NH₄)₃PO₄
Answer:
THE EMPIRICAL FORMULA OF THE SUBSTANCE IS C2H5NO
Explanation:
The steps involved in calculating the empirical formula of this substance in shown in the table below:
Element Carbon Hydrogen Nitrogen Oxygen
1. % Composition 40.66 8.53 23.72 27.09
2. Mole ratio =
%mass/ atomic mass 40.66/12 8.53/1 23.72/14 27.09/16
= 3.3883 8.53 1,6943 1.6931
3. Divide by smallest
value (0.6931) 3.3883/1.6931 8.53/1.6931 1.6943/1.6931 1.6931/1.6931
= 2.001 5.038 1.0007 1
4. Whole number ratio 2 5 1 1
The empirical formula = C2H5NO
Answer: The correct option is 2.
Explanation: There are two types of nuclear reactions:
1) Nuclear fission: These reactions are defined as the reactions in which a heavier unstable nuclei breaks into two or more smaller stable nuclei.
2) Nuclear fusion: These reactions are the ones where two smaller nuclei fuse together or combine together to form a larger nuclei.
In the question, we need to find the fusion reaction which forms elements heavier than helium.
Option 1: In this fusion reaction occurs but the nuclei is Helium itself.
Option 2: In this also fusion reaction occurs and the nuclei is heavier than Helium which is Neon.

Option 3 and Option 4: These two reactions are nuclear fission reactions of Uranium-235 because one heavier element is breaking into more than 2 products.
Hence, the correct option is 2.
Look at the protons and electrons and rememeber metals want to get rid of electrons to be perfect. Nonmetals are wanting to take in. Metals are negatives in electrons. Opposite for nonmetals.