This question is missing the part that actually asks the question. The questions that are asked are as follows:
(a) How much of a 1.00 mg sample of americium remains after 4 day? Express your answer using 2 significant figures.
(b) How much of a 1.00 mg sample of iodine remains after 4 days? Express your answer using 3 significant figures.
We can use the equation for a first order rate law to find the amount of material remaining after 4 days:
[A] = [A]₀e^(-kt)
[A]₀ = initial amount
k = rate constant
t = time
[A] = amount of material at time, t.
(a) For americium we begin with 1.00 mg of sample and must convert time to units of years, as our rate constant, k, is in units of yr⁻¹.
4 days x 1 year/365 days = 0.0110
A = (1.00)e^((-1.6x10^-3)(0.0110))
A = 1.0 mg
The decay of americium is so slow that no noticeable change occurs over 4 days.
(b) We can simply plug in the information of iodine-125 and solve for A:
A = (1.00)e^(-0.011 x 4)
A = 0.957 mg
Iodine-125 decays at a much faster rate than americium and after 4 days there will be a significant loss of mass.
K2S (aq) + CoCl2( aq) -----> 2KCl (aq) + CoS (s)
potassium + cobalt potassium chloride + carbonyl sulfide
sulfide chloride
carbonyl sulfide :- it is chemical compound with linear formula (OCS ) normally written as (CoS) .it does not show its structure . its is colorless flammable gas with an unpleasant odour.
Potassium chloride :- It is metal halide salt composed of potassium and chlorine. it is odorless and has white or colorless crystal appearance <span />
B. the number 3.
there are 2Al's on both sides and 6 Cl's on the right side so to balance it, you multiply Cl2 by 3 to get 6 Cl's.
Nitrogen is crucial to the marine life and it is disappearing because it cannot be assimilated by most organisms in the water.