To determine the moles in 40 grams of magnesium, we need the atomic weight. This can easily be found on a periodic table. For this problem, let's use 24.305 grams/mole.
We are going to set up an equation to determine this problem. In this equation, we want all our units to cancel out except for 'moles.'

In this, we can see that the unit 'grams' will cancel out to leave us with moles.
In solving the equation, we determine that there are approximately 1.65 moles of Magnesium.
Answer:
Mitosis results in the formation of two haploid gametes which can then combine to form a diploid daughter cell
Explanation:
Meiosis creates different cells
True, because the substance basically reacts to the nervous system just like the anesthetic. Which can affect your decision making, and you might experience drowsiness, slow reaction time which is very risky for the driver and his/her surroundings.
Hope this helps :)
Answer:
Ksp = 0.1762
Explanation:
Applying
a) moles of HCl added, n= CV=0.5×0.012 = 6×10-3mol
b) since 0.006mol is present in 0.012dm3 of HCl
It implies moles of borax
C) Concentration = 0.706M
Ksp = [0.5]^2[0.706]= 0.176
Answer:
36.2 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 8.6 atm
- Initial temperature of the gas (T₁): 38°C
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final temperature of the gas (T₂): ?
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C +273.15
K = 38 °C +273.15 = 311 K
Step 3: Calculate T₂
We will use Gay Lussac's law.
P₁/T₁ = P₂/T₂
T₂ = P₂ × T₁/P₁
T₂ = 1.0 atm × 311 K/8.6 atm = 36.2 K