1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
disa [49]
3 years ago
9

A medium-sized jet has a 3.8-mm-diameter fuselage and a loaded mass of 85,000 kg. The drag on an airplane is primarily due to th

e cylindrical fuselage, and aerodynamic shaping gives it a drag coefficient of 0.37. How much thrust must the jet’s engines provide to cruise at 230 m/s at an altitude where the air density is 1.0 kg/m3?
Engineering
1 answer:
SCORPION-xisa [38]3 years ago
5 0

Answer:

F_{thrust} ≅ 111 KN

Explanation:

Given that;

A medium-sized jet has a 3.8-mm-diameter i.e diameter (d) = 3.8

mass = 85,000 kg

drag co-efficient (C) = 0.37

(velocity (v)= 230 m/s

density (ρ) = 1.0 kg/m³

To calculate the thrust; we need to determine the relation of the drag force; which is given as:

F_{drag} = \frac{1}{2} × CρAv²

where;

ρ = density of air wind.

C = drag co-efficient

A = Area of the jet

v = velocity of the jet

From the question, we can deduce that the jet is in motion with a constant speed; as such: the net force acting on the jet in the air = 0

SO, F_{drag}-F_{thrust} = 0

We can as well say:

F_{drag}= F_{thrust}

We can now replace F_{thrust} with F_{drag} in the above equation.

Therefore, F_{thrust} = \frac{1}{2} × CρAv²

The A which stands as the area of the jet is given by the formula:

A=\frac{\pi d^2}{4}

We can now have a new equation after substituting our A into the previous equation as:

F_{thrust} = \frac{1}{2} × Cρ (\frac{\pi d^2}{4})v^2

Substituting our data from above; we have:

F_{thrust} = \frac{1}{2} × (0.37)(1.0kg/m^3)(\frac{\pi(3.8m)^2 }{4})(230m/s)^2

F_{thrust} = \frac{1}{8}   (0.37)(1.0kg/m^3)({\pi(3.8m)^2 })(230m/s)^2

F_{thrust} = 110,990N

F_{thrust}  in N (newton) to KN (kilo-newton) will be:

F_{thrust} = (110,990N)*\frac{1KN}{1,000N}

F_{thrust} = 110.990 KN

F_{thrust} ≅ 111 KN

In conclusion, the jet engine needed to provide 111 KN thrust in order to cruise at 230 m/s at an altitude where the air density is 1.0 kg/m³.

You might be interested in
"A computer architect redesigns the pipeline above to enable branch prediction. When PCSrc is asserted (branch taken) IF/ID is f
Sindrei [870]

Answer:

Explanation:

Find attach the solution

3 0
3 years ago
Answer the question faster please
Juliette [100K]

Answer:

No

Explanation:

3 0
3 years ago
Suppose you have a 9.00 V battery, a 2.00 μF capacitor, and a 7.40 μF capacitor. (a) Find the charge and energy stored if the ca
Andru [333]

Answer:

Q=1.575*10^-6*9=1.42*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *1.575*10^-6=6.38*10^-5J

Q=9.4*10^-6*9=8.46*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *9.4*10^-6=3.81*10^-4J

Explanation:

<u>a)</u>

<u>Identify the unknown:  </u>

The charge and energy stored if the capacitors are connected in series  

<u>List the Knowns: </u>

Capacitance of the first capacitor: C_{1}= 2цF = 2 x 10-6 F

Capacitance of the second capacitor C_{2}= 7.4цF  = 7.4 x 10-6 F

Voltage of battery: V = 9 V  

<u>Set Up the Problem:   </u>

Capacitance of a series combination:  

\frac{1}{C_{s} } =\frac{1}{C_{1} } +\frac{1}{C_{2} } +\frac{1}{C_{3} }+............

\frac{1}{C_{s} } =\frac{1}{2} +\frac{1}{ 7.4} \\C_{s} =\frac{2*7.4}{2+7.4}=1.575 *10^-6 F\\

Capacitance of a series combination is given by:

C_{s}=\frac{Q}{V}

Then the charge stored in the series combination is:  

Q=C_{s} V

Energy stored in the series combination is:  

U_{c}=\frac{1}{2}  V^{2} C_{s}

<u>Solve the Problem:  </u>

Q=1.575*10^-6*9=1.42*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *1.575*10^-6=6.38*10^-5J

<u>b)</u>

<u>Identify the unknown:  </u>

The charge and energy stored if the capacitors are connected in parallel  

<u>Set Up the Problem:  </u>

Capacitance of a parallel combination:

C_{p} =C_{1} +C_{2} +C_{3}

C_{p} =2+7.4=9.4*10^-6F

Capacitance of a parallel combination is given by

C_{p} =\frac{Q}{V}

Then the charge stored in the parallel combination is

Q=C_{p} V

Energy stored in the parallel combination is:  

U_{c}=\frac{1}{2} V^2C_{p}

<u>Solve the Problem: </u><em>  </em>

Q=9.4*10^-6*9=8.46*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *9.4*10^-6=3.81*10^-4J

5 0
3 years ago
Read 2 more answers
A coil with an average diameter of 5 inch will have an area of ""blank"" square meters
nadezda [96]

Answer:

19.64 square inches

Explanation:

Area will be (¶d^2)/4

= (3.142 x 5^2)/4

= 19.64 square inches

8 0
3 years ago
Which of the following best describes the relationship between the World Wide Web and the Internet? А The World Wide Web is a pr
Gwar [14]

Answer:

C

Explanation:

5 0
3 years ago
Other questions:
  • Which of the following is not true about Machine Learning?Machine Learning was inspired by the learning process of human beings.
    11·1 answer
  • For this question, you will be provided with data related to the count of website sessions by day for the past one hundred days.
    6·1 answer
  • In Visual Basic/Visual Studio, characteristics of controls, such as the Name of the control, or the Text displayed on the contro
    10·1 answer
  • How was math used to determine new origami crease plans?
    10·1 answer
  • What is Differential Analysis in fluid mechanics?
    13·1 answer
  • IN JAVA,
    6·1 answer
  • Solving Expressions Analytically 1 point Consider the following equation, which describes the speed of sound a in an ideal gas:
    12·1 answer
  • The goal of the following model is generate a clock waveform that has the clock high 4 time units and low 4 time units, with the
    15·1 answer
  • Test if a number grade is an A (greater than or equal to 90). If so, print "Great!". Hint: Grades may be decimals. Sample Run En
    15·1 answer
  • Provide two programming examples in which multithreading provides better performance than a single-threaded solution. Provide on
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!