1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Annette [7]
3 years ago
9

In the hydrodynamic entrance region of a pipe with a steady flow of an incompressible liquid

Engineering
2 answers:
Yakvenalex [24]3 years ago
6 0

Answer:

D. The maximum velocity decreases with distance from the entrance.

Explanation:

This is because over time, the pressure with with the incompressible liquid enters decreases with distance from the entrance

Contact [7]3 years ago
6 0

Answer:

C. The maximum velocity increases with distance from the entrance

Explanation:

As the fluid particles moves into the pipe, the layer of fluid in contact with the surface of the pipe come to a complete stop. This layer also causes the fluid

particles in the adjacent layers to gradually slow down as a result of friction between fluid molecules, leaving the fluid at the center of the pipe with the maximum velocity.

Since the fluid is incompressible, to make up for this velocity reduction, the velocity of the fluid at the mid-

section of the pipe has to increase to keep the mass flow rate through the

pipe constant. As a result, a velocity gradient develops along the pipe and the maximum velocity which is at the center of the pipe increases with distance from entrance.

You might be interested in
Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at (100%) (125
Anna [14]

Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at 125%.

Section 210.19(A)(1) permits the bigger of the two values listed below to be utilized as the connectors 's ultimate size for sizing an ungrounded branch circuit conductor:

Without any extra adjustments or corrections, either 125% of the continuous load, OR

When adjustment and corrective factors are applied, the load is 100% (not 125% as stated previously).

This will be the same in the 2020 NEC. The introduction of new exception 2 is what has changed. To comprehend this new exception, one must study it very carefully. A part of a branch circuit connected to pressure connectors (such as power distribution blocks) that complies with 110.14(C)(2) may now be sized using the continuous load plus the noncontiguous load instead of 125% of the continuous load thanks to the new exception.

To know more about connectors click here:

brainly.com/question/16987039

#SPJ4

4 0
1 year ago
A seamless pipe 800mm diameter contains a fluid under a pressure of 2N/mm2. If the permissible tensile stress is 100N/mm2, find
Bad White [126]

Answer:

8 mm

Explanation:

Given:

Diameter, D = 800 mm

Pressure, P = 2 N/mm²

Permissible tensile stress, σ = 100 N/mm²

Now,

for the pipes, we have the relation as:

\sigma=\frac{\textup{PD}}{\textup{2t}}

where, t is the thickness

on substituting the respective values, we get

100=\frac{\textup{2\times800}}{\textup{2t}}

or

t = 8 mm

Hence, the minimum thickness of pipe is 8 mm

3 0
3 years ago
What is a combination circuit? A combination circuit:
Anon25 [30]

Answer:

Combination circuit; The basic strategy for the analysis of combination circuits involves using the meaning of equivalent resistance for parallel branches to transform the combination circuit into a series circuit.

Example:

The use of both series and parallel connections within the same circuit. In this case, light bulbs A and B are connected by parallel connections and light bulbs C and D are connected by series connections. This is an example of a combination circuit.

7 0
3 years ago
The hot and cold inlet temperatures to a concentric tube heat exchanger are Th,i = 200°C, Tc,i = 100°C, respectively. The outlet
alexgriva [62]

Answer:Counter,

0.799,

1.921

Explanation:

Given data

T_{h_i}=200^{\circ}C

T_{h_o}=120^{\circ}C

T_{c_i}=100^{\circ}C

T_{c_o}=125^{\circ}C

Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger

Equating Heat exchange

m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]

\frac{m_hc_{ph}}{m_cc_{pc}}=\frac{125-100}{200-120}=\frac{25}{80}=C\left ( capacity rate ratio\right )

we can see that heat capacity of hot fluid is minimum

Also from energy balance

Q=UA\Delta T_m=\left ( mc_p\right )_{h}\left ( T_{h_i}-T_{h_o}\right )

NTU=\frac{UA}{\left ( mc_p\right )_{h}}=\frac{\left ( T_{h_i}-T_{h_o}\right )}{T_m}

T_m=\frac{\left ( 200-125\right )-\left ( 120-100\right )}{\ln \frac{75}{20}}

T_m=41.63^{\circ}C

NTU=1.921

And\ effectiveness \epsilon =\frac{1-exp\left ( -NTU\left ( 1-c\right )\right )}{1-c\left ( -NTU\left ( 1-c\right )\right )}

\epsilon =\frac{1-exp\left ( -1.921\left ( 1-0.3125\right )\right )}{1-0.3125exp\left ( -1.921\left ( 1-0.3125\right )\right )}

\epsilon =\frac{1-exp\left ( -1.32068\right )}{1-0.3125exp\left ( -1.32068\right )}

\epsilon =\frac{1-0.2669}{1-0.0834}

\epsilon =0.799

5 0
4 years ago
What is the force in kN of work done is 1.2 ms moves through 120m​
Semmy [17]

Answer:

\frac{1.2}{120}

0.01

5 0
2 years ago
Other questions:
  • This is a blueprint drawing of the stage area at Millennium Park. The length of one square on the grid is equal to 5 feet. Accor
    14·1 answer
  • What kind or kinds of engineers does take to design a drone and why?
    11·1 answer
  • Rain falls on a 1346 acre urban watershed at an intensity of 1.75 in/hr for a duration of 1 hour. The catchment land use is 20%
    10·1 answer
  • Aerospace engineers who work for certain government agencies are often required to have security clearance. Explain two reasons
    9·1 answer
  • Can a real refrigerator have higher COP than the COP of the Carnot refrigerator?
    7·2 answers
  • Reusable refrigerant containers under high-pressure must be hydrostatically tested how often?
    10·1 answer
  • A hypothetical A-B alloy of composition 57 wt% B-43 wt% A at some temperature is found to consist of mass fractions of 0.5 for b
    15·1 answer
  • The technique of smoothing out joint compound on either side of a joint is known as which of the following
    14·1 answer
  • Suppose the loop is moving toward the solenoid (to the right). Will current flow through the loop down the front, up the front,
    5·2 answers
  • What is a beam on a bridge? what does it do?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!