Answer:
charge on each
Q1 = 2.06 ×
C
Q2 = 7.23 ×
C
when force were attractive
Q1 = 1.07 ×
C
Q2 = -1.39 ×
C
Explanation:
given data
total charge = 93.0 μC
apart distance r = 1.14 m
force exerted F = 10.3 N
to find out
What is the charge on each and What if the force were attractive
solution
we know that force is repulsive mean both sphere have same charge
so total charge on two non conducting sphere is
Q1 + Q2 = 93.0 μC = 93 ×
C
and
According to Coulomb's law force between two sphere is
Force F =
.........1
Q1Q2 = 
here F is force and r is apart distance and k is 9 ×
N-m²/C² put all value we get
Q1Q2 = 
Q1Q2 = 1.49 ×
C²
and
we have Q2 = 93 ×
C - Q1
put here value
Q1² - 93 ×
Q1 + 1.49 ×
= 0
solve we get
Q1 = 2.06 ×
C
and
Q1Q2 = 1.49 ×
2.06 ×
Q2 = 1.49 ×
Q2 = 7.23 ×
C
and
if force is attractive we get here
Q1Q2 = - 1.49 ×
C²
then
Q1² - 93 ×
Q1 - 1.49 ×
= 0
we get here
Q1 = 1.07 ×
C
and
Q1Q2 = - 1.49 ×
2.06 ×
Q2 = - 1.49 × 
Q2 = -1.39 ×
C
Answer:
4.5 W
Explanation:
Applying,
P = V²/(R₁+R₂).................. Equation 1
Where P = Power, V = Voltage, R₁ and R₂ = values of the two resistor.
From the question,
Given: V = 9.00 V, R₁ = 7.00 Ω, R₂ = 11.00 Ω
Substitute these values into equation 1
P = 9²/(7+11)
P = 81/(18)
P = 4.5 Watt.
Hence the power dessipated by the two resistors is 4.5 watt
Graph A so answer B also why isn’t answer a with graph A and B with graph B etc like that’s just confusing lol
Answer:
The following options are true based on the properties of electric field;
a) Electric field lines near positive point charges radiate outward.
b) The electric force acting on a point charge is proportional to the magnitude of the point charge.
d) In a uniform electric field, the field lines are straight, parallel, and uniformly spaced.
Explanation:
From option b) From coulomb's law F = Kq1q2r/r2