Answer: he did travel 15 meters.
Explanation:
We have the data:
Acceleration = a = 1.2 m/s^2
Time lapes = 3 seconds
Initial speed = 3.2 m/s.
Then we start writing the acceleration:
a(t) = 1.2 m/s^2
now for the velocity, we integrate over time:
v(t) = (1.2 m/s^2)*t + v0
with v0 = 3.2 m/s
v(t) = (1.2 m/s^2)*t + 3.2 m/s
For the position, we integrate again.
p(t) = (1/2)*(1.2 m/s^2)*t^2 + 3.2m/s*t + p0
Because we want to know the displacementin those 3 seconds ( p(3s) - p(0s)) we can use p0 = 0m
Then the displacement at t = 3s will be equal to p(3s).
p(3s) = (1/2)*(1.2 m/s^2)*(3s)^2 + 3.2m/s*3s = 15m
The answer is
C. periodic fluctuations in the intensity if sound waves.
Acceleration = (change in speed) / (time for the change)
= (49 m/s) / (5 seconds)
= (49 / 5) m/s / s
= 9.8 m/s²
Answer:
part (a)
towards north east direction.
part (b) s = 46.60 m
Explanation:
Given,
- velocity of the river due to east =

- velocity of the boat due to the north =

part (a)
River is flowing due to east and the boat is moving in the north, therefore both the velocities are perpendicular to each other and,
Hence the resultant velocity i,e, the velocity of the boat relative to the shore is in the North east direction. velocities are the vector quantities, Hence the resultant velocity is the vector addition of these two velocities and the angle between both the velocities are 
Let 'v' be the velocity of the boat relative to the shore.

Let
be the angle of the velocity of the boat relative to the shore with the horizontal axis.
Direction of the velocity of the boat relative to the shore.
part (b)
- Width of the shore = w = 300m
total distance traveled in the north direction by the boat is equal to the product of the velocity of the boat in north direction and total time taken
Let 't' be the total time taken by the boat to cross the width of the river.
Therefore the total distance traveled in the direction of downstream by the boat is equal to the product of the total time taken and the velocity of the river