Answer:
a)
b) 
Explanation:
a) The displacement of the first object is 22.5 m, so we can use the next equation:



positive acceleration.
b) Using the same equation we can find the second value of the acceleration:


positive acceleration.
I hope it helps you!
Answer:
A) At point 1, local acceleration = 0.5 m/s²
At point 2, local acceleration = 1.0 m/s²
B) Average Eulerian convective acceleration over the two points in the cross section shown = 0.5 m/s²
This value is positive indicating an increase in velocity and acceleration kf the fluid as the cross sectional Area of flow reduces.
Explanation:
Local acceleration at those points is the instantaneous acceleration at those points and it is given as
a = dv/dt
At point 1, v₁ = 0.5 t
a₁ =dv₁/dt = 0.5 m/s²
At point 2, v₂ = 1.0 t
a₂ = dv₂/dt = 1.0 m/s²
b) Average Eulerian convective acceleration over the two points in the cross section shown = (change of velocity between the two points)/time
Change of velocity between the two points = v₂ - v₁ = 1.0t - 0.5t = 0.5 t
Time = t
Average acceleration = 0.5t/t = 0.5 m/s²
This value is positive indicating an increase in velocity and acceleration kf the fluid as the cross sectional Area of flow reduces.
Answer:
That an item is neither moving nor staying still in a position that is building up energy.
Explanation:
Answer:

Explanation:
Using the tension in the spring and the force of the tension can by describe by
T = kx
, T = mg
Therefore:

With two springs, let, T1 be the tension in each spring, x1 be the extension of each spring. The spring constant of each spring is 2k so:


Solve to x1





Answer:
accuracy
Explanation:
You are trying to measure the mass of several different objects when you realize that there is a large wad of gum stuck to the underside of the balance pan. Removing the gum will improve the <u>accuracy</u> of your measurements.