Answer:
Explanation:
Earliest standards were dependent on a single frequency/channel to both send and receive. This shared medium creates the same problem as half-duplex coax cable. Because receivers had to wait for the signal before sending a response, this reduced the overall bandwidth.
Other factors affect wireless signal propagation, too, including RF interference, antenna choice, and obstacles such as walls, trees, and even weather (precipitation, for example).
Answer:
weathering occurs when rocks sit in a pool of saltw ater.
Explanation:
i hope you get it right good luck!:))))
lol
The snail will go <span>0.18193752 miles </span>
Answer:
2.61 atm
Ley de Boyle
Explanation:
= Presión inicial = 0.96 atm
= Presión final
= Volumen inicial = 95 mL
= Volumen final = 35 mL
En este problema usaremos la ley de Boyle.

La presión ejercida sobre el émbolo para reducir su volumen es de 2.61 atm.
Answer:
4.9 x 10^-19 J, 2.7 x 10^-19 J
Explanation:
first wavelength, λ1 = 410 nm = 410 x 10^-9 m
Second wavelength, λ2 = 750 nm = 750 x 10^-9 m
The relation between the energy and the wavelength is given by
E = h c / λ
Where, h is the Plank's constant and c be the velocity of light.
h = 6.63 x 10^-34 Js
c = 3 x 10^8 m/s
So, energy correspond to first wavelength
E1 = (6.63 x 10^-34 x 3 x 10^8) / (410 x 10^-9) = 4.85 x 10^-19 J
E1 = 4.9 x 10^-19 J
So, energy correspond to second wavelength
E2 = (6.63 x 10^-34 x 3 x 10^8) / (750 x 10^-9) = 2.652 x 10^-19 J
E2 = 2.7 x 10^-19 J