1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Varvara68 [4.7K]
3 years ago
15

You've been hired to design the hardware for an ink jet printer. You know that these printers use a deflecting electrode to caus

e charged ink drops to form letters on a page. The basic mechanism is that uniform ink drops of about 30 microns radius are charged to varying amounts after being sprayed out towards the page at a speed of about 20 m/s. Along the way to the page, they pass into a region between two deflecting plates that are 1.6 cm long. The deflecting plates are 1.0 mm apart and charged to 1500 volts. You measure the distance from the edge of the plates to the paper and find that it is one-half inch. Assuming an uncharged droplet forms the bottom of the letter, how much charge is needed on the droplet to form the top of a letter 3 mm high (11 pt. type)
Physics
1 answer:
diamong [38]3 years ago
5 0

Answer:

the required charged is 7.06 × 10⁻¹³ C

Explanation:

Given that;

Radius = 30 microns = 30 × 10⁻⁶

Speed v = 20 m/s

length x = 1.6 cm = 0.016 m

spacing d = 1.0 mm = 0.001 m

Voltage V = 1500 V

from the question, the electric field between the plates is uniform and equal to Voltage divided by the distance between the plates.

Electric field E = V/d

E = 1500 V /  0.001 m

E = 1.5 × 10⁶ V/m

Mass of ink drop m = pv

m = 10³ kg/m³ × \frac{4}{3}πr³

m = 1000 kg/m³ × \frac{4}{3}π × (30 × 10⁻⁶)³

m = 1.131 × 10⁻¹⁰ Kg

Time taken to travel t =  x / sped

t = 0.016 m / 20 m/s

t = 0.0008 s

From the kinematic equation

to form the top of a letter 3 mm ( 0.003 m )high

y = \frac{1}{2}at²

2y = at²

a = 2y/t²

we substitute

a = (2 × 0.003 m) / (0.0008 s)²

a =  9375 m/s²

Now Force F = Eq = ma

so

q = ma / E

we substitute

q = ( 1.131 × 10⁻¹⁰ Kg × 9375 m/s² ) / ( 1.5 × 10⁶ V/m )

q = 7.06 × 10⁻¹³ C

Therefore, the required charged is 7.06 × 10⁻¹³ C

You might be interested in
The filament of a certain lamp has a resistance that increases linearly with temperature. When a constant voltage is switched on
Neporo4naja [7]

Answer:

162.8 K

Explanation:

initial current = io

final current, i = io/8

Let the potential difference is V.

coefficient of resistivity, α = 43 x 10^-3 /K

Let the resistance is R and the final resistance is Ro.

The resistance varies with temperature

R = Ro ( 1 + α ΔT)

V/i = V/io (1 + α ΔT )

8 = 1 + 43 x 10^-3 x ΔT

7 = 43 x 10^-3 x ΔT

ΔT = 162.8 K

Thus, the rise in temperature is 162.8 K.

5 0
3 years ago
An electron and a second particle both move in circles perpendicular to a uniformmagnetic field. The mass of the second particle
Katarina [22]

Answer:

The change on the second particle is 2.93\times 10^{-16}\ C.

Explanation:

The period of revolution of the particle in the magnetic field is given by the formula as follows :

T=\dfrac{2\pi m}{Bq}

It is given that the magnetic field is uniform. The mass of the second particle is the same as that of a proton but thecharge of this particle is different from that of a proton.

m_s=m_p

If both particles take the same amount of time to go once around their respective circles. So,

T_e=T_s\\\\\dfrac{2\pi m_e}{Bq_e}=\dfrac{2\pi m_s}{Bq_s}\\\\\dfrac{m_e}{q_e}=\dfrac{m_p}{q_s}\\\\q_s=\dfrac{m_pq_e}{m_e}\\\\q_s=\dfrac{1.67\times 10^{-27}\times 1.6\times 10^{-19}}{9.11\times 10^{-31}}\\\\q_s=2.93\times 10^{-16}\ C

So, the change on the second particle is 2.93\times 10^{-16}\ C.

7 0
3 years ago
After pushing away from each other, two objects have equal but opposite momentum. Which of the following is true for the total m
weqwewe [10]
I think the answer is B
5 0
3 years ago
Explain the term inertia<br>​
andreyandreev [35.5K]

Answer: See explanation

Explanation:

Inertia is the force that keeps an object at rest. Inertia is referred to as the property which results in it continuing in the state of rest that it is unless there's an external force that acts upon it.

Inertia keeps objects and things in place and it holds the universe together. When there's no force that's acting in an object, such object will continue to move in a straight line and also at a constant speed.

8 0
2 years ago
(a) Neil A. Armstrong was the first person to walk on the moon. The distance between the earth and the moon is 3.85 x 108 m. Fin
gizmo_the_mogwai [7]

Answer:

a). 1.28333 seconds

b). 186.66 seconds

Explanation:

a). Given :

Distance between the earth and the moon, d = $3.85 \times 10^8$ m

Speed of the radio waves, c = $3 \times 10^8$ m/s

Therefore the time required for the voice of Neil Armstrong to reach the earth via radio waves is given by :

$t=\frac{d}{c}$

 $=\frac{3.85 \times 10^8}{3 \times 10^8}$

 = 1.28333 seconds

b). Distance between Mars and the earth, d = $5.6 \times 10^{10}$ m

   Speed of the radio waves, c = $3 \times 10^8$ m/s

So, the time required for his voice to reach earth is :

$t=\frac{d}{c}$

 $=\frac{5.6 \times 10^{10}}{3 \times 10^8}$

 = 186.66 seconds

6 0
3 years ago
Other questions:
  • The rate an object is moving relative to a reference point is its
    5·1 answer
  • A motorcycle accelerates uniformly from rest at 7.9\,\dfrac{\text{m}}{\text{s}^2}7.9 s 2 m ​ 7, point, 9, space, start fraction,
    10·1 answer
  • A heat exchanger for heating liquid mercury is under development. The exchanger is visualized as a 15cm-long and 0.3m-wide flat
    6·1 answer
  • When an electron moves from a lower to a higher energy level
    15·1 answer
  • A 6.0x10-2kg hollow racquetball with an initial speed of 18.6 m/s collides with a backboard. It rebounds with a speed of 4.6 m/s
    13·1 answer
  • The moon is 3x10^5 km away from Nepal and the mass of the moon is 7x10^22 kg. Calculate the force with which the Moon pulls ever
    15·1 answer
  • Hii! help asap. i’ll give brainliest thanks!
    10·1 answer
  • How are vibration waves and energy related to sounds
    7·2 answers
  • Can an object have positive acceleration and decreasing speed?.
    12·1 answer
  • Describe the relationship between the Law of Conservation of Matter and balancing equations.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!