I believe the best answer to that question wud be D. I cud b wrong
No, they can have potential energy
Answer:
Pentan-2-ol
Explanation:
On this reaction, we have a <u>Grignard reagent</u> (ethylmagnesium bromide), therefore we will have the production of a <u>carbanion</u> (step 1). Then this carbanion can <u>attack the least substituted carbon</u> in the epoxide in this case carbon 1 (step 2). In this step, the epoxide is open and a negative charge is generated in the oxygen. The next step, is the <u>treatment with aqueous acid</u>, when we add acid the <u>hydronium ion</u> (
) would be produced, so in the reaction mechanism, we can put the hydronium ion. This ion would be <u>attacked by the negative charge</u> produced in the second step to produce the final molecule: <u>"Pentan-2-ol".</u>
See figure 1
I hope it helps!
Answer:
number of moles = 0.21120811
Explanation:
To find the number of moles, given the mass of the solute, we use the formula:




Label the variables with the numbers in the problem:



The first thing we have to do is find the molar mass of sodium sulfate, in order for us to use the formula for finding the number of moles:
Formula for finding the molar mass of sodium sulfate:

For the variables and what they mean are below for finding the molar mass of sodium sulfate:





Plug the numbers into the formula, to find the molar mass of sodium sulfate:











Now that we have found the molar mass, we can calculate the number of moles in the solution of sodium sulfate with the formula:








0.21120811 rounded gives you 0.2112
or if you did the problem without decimals
30 grams of sodium sulfate divided by its molecular weight – which we found to be 142 – gives us a value of 0.2113 moles.
The option that distinguishes a nuclear reaction from a chemical reaction is D. there is a change in the nucleus.
During a nuclear reaction, two light nuclei combine in order to create a new, heavier one which is different than those two original ones and has additional particles that it didn't have originally. This is what makes the difference between these two reactions.