Sodium has a lower ionization energy than magnesium describes why sodium reacts vigorously than magnesium chloride.
<h3>Why is sodium more reactive than magnesium?</h3>
- Sodium is more reactive than magnesium because it has the ability to easily lose electron, hence have lower ionization energy.
- Sodium belong to group one on the periodic table and they are called akali metal while magnesium belong to group two on the periodic table and they are called alkali Earth metal.
- Sodium and magnesium belong to the in the 3rd period. Iin the outermost energy level sodium has one electron but magnesium has 2 electrons. Therefore, there is more attraction abetween the nucleus and electrons in magnesium than that of sodium.
Therefore, sodium is more reactive than magnesium chloride because of lower ionization energy.
For more details on sodium reactivity, check the link below.
brainly.com/question/6837593
Answer:
A. Metallic bond
Explanation:
Think about it: copper and tin are both common metals. That's how we know it's a metallic bond!
Why not B: Covalent bonds are between two nonmetals.
Why not C: Ionic bonds are between a nonmetal and a metal.
Why not D: Paired bond isn't a common phrase in chemistry.
D. amu
amu stands for atomic mass unit
to be as exact as i can it is all of them they all work together to make water good.
Answer:
Option D is correct.
The concentrations of both PCl₅ and PCl₃ are changing at equilibrium
Explanation:
Chemical equilibrium during a reversible chemical reaction, is characterised by an equal rate of forward reaction and backward reaction. It is better described as dynamic equilibrium.
This is because, the concentration of the elements and compounds involved in the reversible chemical reaction at equilibrium changes, but the rate of change of the reactants is always equal to the rate of change of products.
Hence, the concentration of reactants and products, such as PCl₅ and PCl₃ are allowed to change at equilibrium, but alas, the rate of forward reaction must always match the rate of backward reaction for the process to remain in a state of Chemical equilibrium.
Hope this Helps!!!