Answer:
Outside air
Nose
Lungs
Bloodstream
Cell
Explanation:
We breathe in oxygen from the outside air in through our nose and it travels to our lungs. Inside our lungs, we have Avioli's that diffuse oxygen into our bloodstream and the bloodstream helps the oxygen travel into our cells.
Hope this helps :)
This problem is simply converting the concentration from molality to molarity. Molality has units of mol solute/kg solvent, while molarity has units of mol solute/L solution.
2.24 mol H2SO4/kg H2O * (0.25806 kg H2SO4/mol H2SO4) = 0.578 kg H2SO4/kg H2O
That means the solution weighs a total of 1 kg + 0.578 kg = 1.578 kg. Then, convert it to liters using the density data:
1.578 kg * (1000g / 1kg) * (1 mL/1.135 g) = 1390 mL or 1.39 L.
Hence, the molarity is
2.24/1.39 = 1.61 M
Explanation:
Because when two equal forces are applied from opposite directions, they "eliminate" each other.
The train would go right if a 3N force was only applied in the right direction, and it would go left if the same force was only applied to the left.
If a 3N force was applied to the right and a 2N force to the left, it would equal a 1N force to the right (3-2=1).
But there it's 3-3=0, so in practice the force is 0N. Therefore the train won't move.
<span>The "exosphere" is the most distant and tenuous "layer" of our atmosphere.</span>
Answer: It is important to wet the filter paper in the Buchner funnel first with cold re crystallization solvent before the re crystallization mixture being filtered to minimize gaps around the edges of the filter paper which can prevent mechanical impurities from passing through. This gives better filtration where most impurities can be filtered. Furthermore, it provides good vacuum.