Answer:

Explanation:
The volume of the balloon can be find compared the force in each cases so:
reduce 25% from 74kg

So the net force uproad on the balloon is

Now the density of the both gases air and helium are different however the volume is the same change offcorss the mass so:






<h2>The different forces acting on the ball while its in air</h2>
Amy throws a softball through the air. Applied, drag and gravitational forces are acting on the ball while it’s in the air. The softball experiences force as a result of Amy’s throw. As the ball moves, it experiences from the air it passes through.
It also experiences a downward pull because earth has the property to attract everything which is on the earth towards it. The ball is moving in the air but earth applies force on the ball to get back on the ground. Hence, in this way, gravitational force applies.
There is also a drag force which results due to friction that is present in the air. It resist to move ball in the air and there will also be applied force which is given by a person who throws by applying force.
Answer:
The sun.
Explanation:
The sun provides energy for living organisms, and it drives our planet’s weather and climate patterns.
Remember, Earth is spherical and the energy from the sun does not reach all areas with equal intensity. Areas exposed to the sun are directly on the sun’s rays (i.e. those nearest to the equator) and hence, receive greater solar input. In contrast, those in higher latitudes receive sunlight that is spread over a larger area and that has taken a longer path through the atmosphere. As a result, these higher latitudes receive less solar energy.
Also, ocean circulation and precipitation are all factors of weather
Answer:
Explanation:
Examples are;
Ultraviolet light from sun.
Heat from a stove burner.
X-ray from an x-ray machine.
Alpha particle emit from a radio active decay of uranium.
Sound waves from your stereo.
Microwave from micro oven.
ultraviolet light from a black light.
Gamma radiations from a supernova.
AND MANY MORE.
Answer:
(a) The range of the projectile is 31,813.18 m
(b) The maximum height of the projectile is 4,591.84 m
(c) The speed with which the projectile hits the ground is 670.82 m/s.
Explanation:
Given;
initial speed of the projectile, u = 600 m/s
angle of projection, θ = 30⁰
acceleration due to gravity, g = 9.8 m/s²
(a) The range of the projectile in meters;

(b) The maximum height of the projectile in meters;

(c) The speed with which the projectile hits the ground is;
