Answer:
The minimum distance between two points on the object that are barely resolved is 0.26 mm
The corresponding distance between the image points = 0.0015 m
Explanation:
Given
focal length f = 50 mm and maximum aperture f>2
s = 9.0 m
aperture = 25 mm = 25 *10^-3 m
Sin a = 1.22 *wavelength /D
Substituting the given values, we get –
Sin a = 1.22 *600 *10^-9 m /25 *10^-3 m
Sin a = 2.93 * 10 ^-5 rad
Now
Y/9.0 m = 2.93 * 10 ^-5
Y = 2.64 *10^-4 m = 0.26 mm
Y’/50 *10^-3 = 2.93 * 10 ^-5
Y’ = 0.0015 m
To solve this problem it is necessary to apply the concepts related to the capacitance in the disks, the difference of the potential and the load in the disc.
The capacitance can be expressed in terms of the Area, the permeability constant and the diameter:

Where,
= Permeability constant
A = Cross-sectional Area
d = Diameter
Potential difference between the two disks,
V = Ed
Where,
E = Electric field
d = diameter
Q = Charge on the disk equal to 
Through the value found and the expression given for capacitance and potential, we can define the electric charge as





Re-arranging the equation to find the diameter of the disks, the equation will be:

Replacing,


Therefore the diameter of the disks is 0.03m
Answer: When you touch wet canvas, surface tension will draw water to your finger. However, the drop left behind where you touched, like any irregular point on an overhead surface, will draw condensation from inside the tent if it is humid.
The Ideal Gas Law makes a few assumptions from the Kinetic-Molecular Theory. These assumptions make our work much easier but aren't true under all conditions. The assumptions are,
1) Particles of a gas have virtually no volume and are like single points.
2) Particles exhibit no attractions or repulsions between them.
3) Particles are in continuous, random motion.
4) Collisions between particles are elastic, meaning basically that when they collide, they don't lose any energy.
5) The average kinetic energy is the same for all gasses at a given temperature, regardless of the identity of the gas.
It's generally true that gasses are mostly empty space and their particles occupy very little volume. Gasses are usually far enough apart that they exhibit very little attractive or repulsive forces. When energetic, the gas particles are also in fairly continuous motion, and without other forces, the motion is basically random. Collisions absorb very little energy, and the average KE is pretty close.
Most of these assumptions are dependent on having gas particles very spread apart. When is that true? Think about the other gas laws to remember what properties are related to volume.
A gas with a low pressure and a high temperature will be spread out and therefore exhibit ideal properties.
So, in analyzing the four choices given, we look for low P and high T.
A is at absolute zero, which is pretty much impossible, and definitely does not describe a gas. We rule this out immediately.
B and D are at the same temperature (273 K, or 0 °C), but C is at 100 K, or -173 K. This is very cold, so we rule that out.
We move on to comparing the pressures of B and D. Remember, a low pressure means the particles are more spread out. B has P = 1 Pa, but D has 100 kPa. We need the same units to confirm. Based on our metric prefixes, we know that kPa is kilopascals, and is thus 1000 pascals. So, the pressure of D is five orders of magnitude greater! Thus, the answer is B.