Answer:
Electroosmotic velocity will be equal to 
Explanation:
We have given applied voltage v = 100 volt
Length of capillary L = 5 mm = 0.005 m
Zeta potential of the capillary surface 
Dielectric constant of glass is between 5 to 10 here we are taking dielectric constant as 
Viscosity of glass is 
Electroosmotic velocity is given as 

So Electroosmotic velocity will be equal to 
A vector is a phenomenon which in mostly used in mathematics and physics and is related to direction and size.
<u>Explanation:</u>
In mathematics and physics, a vector is a component of a vector space. For some, particular vector spaces, the vectors have gotten explicit names, which are recorded beneath. Verifiably, vectors were presented in geometry and material science before the formalization of the idea of vector space.
A vector is an amount or phenomenon that has two autonomous properties: magnitude and direction. The term likewise means the numerical or geometrical portrayal of such an amount.
Answer:
Explanation:
It wouldn't work because the wind energy she would be collecting would actually come from the car engine.
The relative wind velocity observed from a moving vehicle is the sum of the actual wind velocity and the velovity of the vehicle.
u' = u + v
While running a car will generate a rather high wind velocity, and increase the power generated by a wind turbine, the turbine would only be able to convert part of the wind energy into electricity while adding a lot of drag. In the end, it would generate less energy that what the drag casuses the car to waste to move the turbine.
Regenerative braking uses an electric generator connected to the wheel axle to recover part of the kinetic energy eliminated when one brakes the vehicle. Normal brakes dissipate this energy as heat, a regenerative brake uses it to recharge a batttery. Note that is is a fraction of the energy that is recovered, not all of it.
A "regenerative accelerator" makes no sense. Braking is taking kinetic energy out of the vehicle, while accelerating is adding kinetic energy to it. Cars accelerate using the power from their engines.
Answer:
Machine Safeguards must meet these minimum general requirements: Prevent contact: The safeguard must prevent hands, arms, or any other part of a worker's body from making contact with dangerous moving parts. Be secure: Workers should not be able to easily remove or tamper with the safeguard.