Answer:
a) Ef = 0.755
b) length of specimen( Lf )= 72.26mm
diameter at fracture = 9.598 mm
c) max load ( Fmax ) = 52223.24 N
d) Ft = 51874.67 N
Explanation:
a) Determine the true strain at maximum load and true strain at fracture
True strain at maximum load
Df = 9.598 mm
True strain at fracture
Ef = 0.755
b) determine the length of specimen at maximum load and diameter at fracture
Length of specimen at max load
Lf = 72.26 mm
Diameter at fracture
= 9.598 mm
c) Determine max load force
Fmax = 52223.24 N
d) Determine Load ( F ) on the specimen when a true strain et = 0.25 is applied during tension test
F = 51874.67 N
attached below is a detailed solution of the question above
Given:
diameter of sphere, d = 6 inches
radius of sphere, r =
= 3 inches
density,
= 493 lbm/ 
S.G = 1.0027
g = 9.8 m/
= 386.22 inch/ 
Solution:
Using the formula for terminal velocity,
=
(1)

where,
V = volume of sphere
= drag coefficient
Now,
Surface area of sphere, A = 
Volume of sphere, V = 
Using the above formulae in eqn (1):
= 
=
= 
Therefore, terminal velcity is given by:
=
inch/sec
Answer:
Why do you want to know...?
Answer:
Taking responsibility for your own learning makes it easier to identify your strengths and weaknesses. Once these have been identified you can work on a learning plan that focuses on the areas that you need most help with, increasing the speed of your learning, and build the skills you have been trying to perfect.
Explanation: