Explanation:
First of all get the input from the user, number of rows and number of columns where rows represents seat digit number and column represents the seat letter
rows is initialized to 1 to ensure that row starts at 1 or you can remove it then seat number will start from 0.
The first loop is used for digits starting from 1 to number of rows
The second loop is used for letters starting from 1 to number of columns
since rows and cols are not of the same type that's why we are converting the int type to string type
print(str(rows)+cols) counter will keep updating the columns A, B, C.....
rows= rows + 1 counter will keep updating the rows 1, 2, 3....
Code:
Please refer to the attached image.
Output:
Please enter the number of rows: 2
Please enter the number of columns: 3
1A
1B
1C
2A
2B
2C
Answer:
The statement can be written as
int result = cube(4);
Explanation:
A function is a block of reusable codes to perform some tasks. For example, the function in the question is to calculate the cube of a number.
A function can also operate on one or more input value (argument) and return a result. The <em>cube </em>function in the question accept one input value through its parameter <em>number </em>and the <em>number</em> will be multiplied by itself twice and return the result.
To call a function, just simply write the function name followed with parenthesis (e.g. <em>cube()</em>). Within the parenthesis, we can include zero or one or more than one values as argument(s) (e.g. <em>cube(4)</em>).
We can then use the "=" operator to assign the return output of the function to a variable (e.g. <em>int result = cube(4)</em>)
Answer:
23.3808 kW
20.7088 kW
Explanation:
ρ = Density of oil = 800 kg/m³
P₁ = Initial Pressure = 0.6 bar
P₂ = Final Pressure = 1.4 bar
Q = Volumetric flow rate = 0.2 m³/s
A₁ = Area of inlet = 0.06 m²
A₂ = Area of outlet = 0.03 m²
Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s
Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s
Height between inlet and outlet = z₂ - z₁ = 3m
Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

Work done by pump

∴ Power input to the pump 23.3808 kW
Now neglecting kinetic energy

Work done by pump

∴ Power input to the pump 20.7088 kW
Answer:
<em>No, the velocity profile does not change in the flow direction.</em>
Explanation:
In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, <em>then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.</em>
Yes. They are declining in China. Very fast