Energy to lift something =
(mass of the object) x (gravity) x (height of the lift).
BUT ...
This simple formula only works if you use the right units.
Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters
For this question . . .
Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms
Gravity (on Earth) = 9.8 m/second²
Height = 500 cm = 5.0 meters
So we have ...
Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)
= 2,696,925 joules .
That's quite a large amount of energy ... equivalent to
straining at the rate of 1 horsepower for almost exactly an
hour, or burning a 100 watt light bulb for about 7-1/2 hours.
The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.
Answer:
Velocity of airplane is 500 km/h
Velocity of wind is 40 km/h
Explanation:
= Velocity of airplane in still air
= Velocity of wind
Time taken by plane to travel 1150 km against the wind is 2.5 hours

Time taken by plane to travel 450 km against the wind is 50 minutes = 50/60 hours

Subtracting the two equations we get

Applying the value of velocity of wind to the first equation

∴ Velocity of airplane in still air is 500 km/h and Velocity of wind is 40 km/h
Yep. he discovered that coastline from south america and africa fit together like a puzzle, which later became a part of the continential drift theory
Answer:
Latent heat is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process. Two common forms of latent heat are latent heat of fusion (melting) and latent heat of vaporization (boiling).
Explanation: