Just read the back of the cake box
Answer:
374 N
Explanation:
N = normal force acting on the skier
m = mass of the skier = 82.5
From the force diagram, force equation perpendicular to the slope is given as
N = mg Cos18.7
μ = Coefficient of friction = 0.150
frictional force is given as
f = μN
f = μmg Cos18.7
F = force applied by the rope
Force equation parallel to the slope is given as
F - f - mg Sin18.7 = 0
F - μmg Cos18.7 - mg Sin18.7 = 0
F = μmg Cos18.7 + mg Sin18.7
F = (0.150 x 82.5 x 9.8) Cos18.7 + (82.5 x 9.8) Sin18.7
F = 374 N
<h2><u>Projectile</u><u> </u><u>motion</u><u>:</u></h2>
<em>If</em><em> </em><em>an</em><em> </em><em>object is given an initial velocity</em><em> </em><em>in any direction and then allowed</em><em> </em><em>to travel freely under gravity</em><em>, </em><em>it</em><em> </em><em>is</em><em> </em><em>called a projectile motion</em><em>. </em>
It is basically 3 types.
- horizontally projectile motion
- oblique projectile motion
- included plane projectile motion
Answer:
W = 9.6 N
Explanation:
Given that,
Area on 1 foot, A = 0.6 m²
Pressure, P = 16 Pa
The pressure is given by force acting per unit area. So,

So, the required weight is 9.6 N.