W=mgh W=(20)(9.8)(1) w=196J
The energy carried by the incident light is

where h is the Planck constant and f is the frequency of the light. The threshold frequency is the frequency that corresponds to the minimum energy needed to eject the electrons from the metal, so if we substitute the threshold frequency in the formula, we get the minimum energy the light must have to eject the electrons:
Answer:
stress tension tensile strength
Explanation:
The maximum stress which a material can withstand when it is pulled apart is its: stress tension tensile strength.
The term saturated solution is used in chemistry to define a solution in which no more solute can be dissolved in the solvent. It is understood that saturation of the solution has been achieved when any additional substance that is added results in a solid precipitate or is let off as a gas.
Explanation:
1. Acceleration is the change in velocity over time.
a = Δv / Δt
a = (29.8 m/s − 37.1 m/s) / 3 s
a = -2.43 m/s²
2. Work equals force times distance.
W = Fd
W = (87.3 N) (2.04 m)
W = 178 J
3. Power is work per time.
P = W / t
267 W = 1250 J / t
t = 4.68 s