Answer:
Electric Field = 3.369 x 10^4 N/C
Explanation:
Radius = r = (r1 + r2) / 2 = (1.6 + 3.6) /2 = 2.6 cm + 2.3 cm = 4.9 cm = 0.049 m
As we know, Electric field = E = kQ/r.r
= 8.98755 x 10^9 x 9 x 10^-9 / 0.049 x 0.049 = 33689.275 N/C
= 3.369 x 10^4 N/C
Answer:

б / 
Ф ( б /
)
Explanation:
<u>Develop a suitable set of dimensionless parameters for this problem</u>
The set of dimensionless parameters for this problem is :

б / 
Ф ( б /
)
and they are using the pi theorem, MLT systems
attached below is a detailed solution
A blackbody curve represents the relation between <u>intensity of radiation with wavelength.</u>
Here in this curve we can see that all ideal blackbody radiates almost all wavelength of radiations and these radiations are of different intensity.
here intensity will be maximum for a given wavelength of radiation and the relation of this wavelength with the temperature of the object is given by Wein's law
It is given by

now if we increase the temperature the maximum intensity for which wavelength is given will shift to the left.
Using this all we can also compare the temperature of two blackbody for which radiation graph is given to us.
<span>When temperature is increased,
the rate of dissolving increases. The kinetic energy of the molecules of the
solute and solvent molecules is high thereby increasing their contact. An example
is mixing powdered sugar to the water. When you add water to the sugar, the
dissolving process is slow. However, when you increase the temperature of the
water by boiling it, the sugar dissolves immediately. </span>