<u>Answer</u>:-
Name of element = Lead
Symbol ♾ of Lead = Pb
Atomic no. = 82
Atomic mass = 207.2 amu
No. of protons = 82
No. of electrons = 82
Yes, lead(Pb) is a metallic element and certainly it has 6 electron shells which means 6 energy level.
If you find anything unclear you can ask me...
It’s lower, hope this helps with your issue and helps solve your problem, no problem
Answer:
- 13.56 g of sodium chloride are theoretically yielded.
- Limiting reactant is copper (II) chloride and excess reactant is sodium nitrate.
- 0.50 g of sodium nitrate remain when the reaction stops.
- 92.9 % is the percent yield.
Explanation:
Hello!
In this case, according to the question, it is possible to set up the following chemical reaction:

Thus, we can first identify the limiting reactant by computing the yielded mass of sodium chloride, NaCl, by each reactant via stoichiometry:

Thus, we infer that copper (II) chloride is the limiting reactant as it yields the fewest grams of sodium chloride product. Moreover the formed grams of this product are 13.56 g. Then, we take 13.56 g of sodium chloride to compute the consumed mass sodium nitrate as it is in excess:

Therefore, the leftover of sodium nitrate is:

Finally, the percent yield is computed via:

Best regards!
Since we're talking about a chain reaction, I think this would be a) self-sustaining. Chain reactions are not usually described as "weak" and can be highly explosive depending upon the compounds (think Uranium!).
The first (artificial) self-sustaining nuclear reaction is attributed to Enrico Fermi in 1942. Here's a bit of history:
http://www.atomicarchive.com/History/firstpile/firstpile_01.shtml
Answer:
2Al+1.5O2→Al2O3
Thus, 2 mol of Al combine with 1.5 mol of oxygen to form 1 mol of Al2O3.
2 mol of Al corresponds to 2×27=54 g.
Thus, the weight of Al used in the reaction is 54 g.