The second illustration is the best representation of the change in the movement of particles as the temperature of the water changes.
<u>Explanation:</u>
The second option perfectly represents the boiling of water. As when the temperature is increased, the water molecules gain energy to move faster, thus their kinetic energy of the atoms will be more. This will lead to more freely movement of all the atoms of the water.
And as boiling leads to transformation from liquid state to gaseous state, so the increase in the distance between atoms and molecules occurs in the gaseous state. Thus, the second illustration is best suitable for representing the boiling of water.
As on increasing temperature of the water, the distance between the molecules is increasing in the second illustration while the other illustration shows the decrease in the distance between the molecules. So, the second illustration is the best representation of the change in the movement of particles as the temperature of the water changes.
Table slat has a low melting pointy while mercury has a high one
<span />
Answer:
Explanation:
The cell reaction properly written is shown below:
Cu|Cu²⁺
|| Ag⁺
| Ag
From this cell reaction, to get the net ionic equation, we have to split the reaction into their proper oxidation and reduction halves. This way, we can know that is happening at the electrodes and derive the overall net equation.
Oxidation half:
Cu
⇄ Cu²⁺
+ 2e⁻
At the anode, oxidation occurs.
Reduction half:
Ag⁺
+ 2e⁻ ⇄ Ag
At the cathode, reduction occurs.
To derive the overall reaction, we must balance the atoms and charges:
Cu
⇄ Cu²⁺
+ 2e⁻
Ag⁺
+ e⁻ ⇄ Ag
we multiply the second reaction by 2 to balance up:
2Ag⁺
+ 2e⁻ ⇄ 2Ag
The net reaction equation:
Cu
+ 2Ag⁺
+ 2e⁻⇄ Cu²⁺
+ 2e⁻ + 2Ag
We then cancel out the electrons from both sides since they appear on both the reactant and product side:
Cu
+ 2Ag⁺
⇄ Cu²⁺
+ 2Ag
Answer:

Explanation:
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 28.01 17.03
N₂ + 3H₂ ⟶ 2NH₃
m/g: 240.0
(a) Moles of NH₃

(b) Moles of N₂

(c) Mass of N₂

Answer: I think the answer is 3.) Krypton or Argon.
Explanation: