1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
3 years ago
15

A student placed 13.5 g of glucose (C6H12O6) in a volumetric flask, added enough water to dissolve the glucose by swirling, then

carefully added additional water until the 100. mL mark on the neck of the flask was reached. The flask was then shaken until the solution was uniform. A 55.0 mL sample of this glucose solution was diluted to 0.500 L. How many grams of glucose are in 100. mL of the final solution?
Chemistry
2 answers:
lozanna [386]3 years ago
8 0
Molar mass of glucose = 180 g/mol

moles = mass / molar mass.

hence moles of glucose added = 13.5 g / (180 g/mol) = X mol

those moles in 100.0 mL of solution.

Hence moles in 55.0 mL = (X mol x 55.0 mL) / 100.0 mL

that 55.0 mL was diluted to 0.500 L (500 mL)
Hence glucose moles in 500 mL = moles in 55.0 mL 
                                                    = (X mol x 55.0 mL) / 100.0 mL 

Final 100.0 mL was taken from the diluted solution.
Hence moles in final 100.0 mL = ((X mol x 55.0 mL) / 100.0 mL) x (100.0 mL)                                                                                                        / 500.0 mL 
                                                 = X x 11 / 100
Glucose mass in final 100.0 mL = X x 11 / 100 mol x 180 g/mol
                                                   = 1.485 g
Vlada [557]3 years ago
5 0

Answer:

there are 1.49 grams of glucose in 100 mL of the final solution

Explanation:

First, calculate the initial concentration of glucose. As the concentration is the rate between amount of solute (glucose) and solution, we can express it as grams of glucose per volume of solution:

initial concentration=Ci=\frac{gGlucose}{VolumeSolution}

Ci=\frac{13.5g}{100mL} =0.135g/mL

As we are diluting the solution, we use the equation:

(Initial concentration)(initial volume)=(final concentration)(final volume) or (Ci)(Vi)=(Cf)(Vf)

We need the final concentration of glucose to find the grams of glucose in 100 mL of this solution, from the above equation we have:

Cf=\frac{(Ci)(Vi)}{Vf}

Cf=\frac{(0.135g/mL)(55.0mL)}{500mL}=0.0149g/mL

Note that 0.500 L = 500 mL, so the units cancelled each other.

And for the definition of concentration we have:

C=\frac{gGlucose}{mLSolution}

gGlucose=(C)(mLSolution)=(0.0149g/mL)(100mL)=1.49g

So, there are 1.49 grams of glucose in 100 mL of the final solution which concentration is 0.0149 g/mL

You might be interested in
Energy is released when the nucleus of an atom splits and two smaller atoms are formed. What is the name of this process?
Svetllana [295]

Explanation:

It's (D), nuclear fission................

5 0
3 years ago
3. How much energy is needed to raise 45 grams of water from 40°C to 115 °C?
Dafna1 [17]

Answer:

Q = 114349.5 J

Explanation:

Hello there!

In this case, since this a problem in which we need to calculate the total heat of the described process, it turns out convenient to calculate it in three steps; the first one, associated to the heating of the liquid water from 40 °C to 100 °C, next the vaporization of liquid water to steam at constant 100 °C and finally the heating of steam from 100 °C to 115 °C. In such a way, we calculate each heat as shown below:

Q_1=45g*4.18\frac{J}{g\°C}*(100\°C-40\°C)=11286J\\\\Q_2=45g* 2260 \frac{J}{g} =101700J\\\\Q_3=45*2.02\frac{J}{g\°C}*(115\°C-100\°C)=1363.5J

Thus, the total energy turns out to be:

Q_T=11286J+101700J+1363.5J\\\\Q_T=114349.5J

Best regards!

5 0
3 years ago
In the diagram, which letter represents the energy of the products?
inessss [21]

Answer:

D

Explanation:

8 0
3 years ago
Read 2 more answers
According to Hund's rule of maximum spin multiplicity, how many singly-occupied orbitals are there in the valence shells of the
leva [86]

Answer:

A) carbon  - 2

B) cobalt  - 3

C) sulfur   - 2

D) fluorine   - 1

E) titanium   - 2

F) germanium  - 2

Explanation:

Hund's rule of maximum multiplicity:-

Firstly, every orbital which is present in the sublevel is singly occupied and then the orbital is doubly occupied.  

(A) Carbon.

The electronic configuration is -  

1s^22s^22p^2

Thus, 2s orbital is fully filled and p orbital can singly filled 3 electrons. Thus, Carbon has 2 singly occupied orbitals.

(B) Cobalt.

The electronic configuration is -  

1s^22s^22p^63s^23p^63d^{7}4s^2

Thus, 4s orbital is fully filled and d orbital can singly filled 5 electrons. Thus, 4 electrons will be paired in 2 orbitals and 3 orbitals will be singly filled in cobalt.

(C) Sulfur.

The electronic configuration is -  

1s^22s^22p^63s^23p^4

Thus, 3s orbital is fully filled and p orbital can singly filled 3 electrons. Thus, 2 electrons will be paired in 1 orbital and 2 orbitals will be singly filled in sulfur.

D) fluorine

The electronic configuration is -  

1s^22s^22p^5

Thus, 2s orbital is fully filled and p orbital can singly filled 3 electrons. Thus, 4 electrons will be paired in 2 orbitals and 1 orbital will be singly filled in fluorine.

E) Titanium

The electronic configuration is -  

1s^22s^22p^63s^23p^63d^{2}4s^2

Thus, 4s orbital is fully filled and d orbital can singly filled 5 electrons. Thus, 2 orbitals will be singly filled in titanium.

F) Germanium

The electronic configuration is -  

1s^22s^22p^63s^23p^63d^{10}4s^24p^2

Thus, 4s, 3d orbitals are fully filled and p orbital can singly filled 3 electrons. Thus, Germanium has 2 singly occupied orbitals.

4 0
3 years ago
Gold has a molar mass of 197 g/mol. (a) how many moles of gold are in a 3.98 g sample of pure gold? (b) how many atoms are in th
Natali5045456 [20]
A.)49.4974874 moles or 49.5 moles
B.)2.980808730172671e+25 or 3e+25
6 0
3 years ago
Other questions:
  • Co(g) + 2 h2 --> ch3oh 2.50 g of hydrogen is reacted with 30.0 l of carbon monoxide at stp. 1. what is the limiting reactant?
    14·2 answers
  • If gas particles start colliding with the walls of their metallic container with increased force, what is their direct effect? l
    10·2 answers
  • Calculate the atomic mass of Carbon if the two common isotopes of carbon have masses of
    7·1 answer
  • Jules Verne wrote the book Twenty Thousand Leagues Under the Sea. If one league - 5.556 km and one furlong - 660.0 feet, how man
    9·1 answer
  • What does matter have to do with chemistry? How are forces involved?
    14·2 answers
  • What is the mass, in grams of a pure iron cube that has a volume of 4.20cm^3
    11·1 answer
  • The balanced equation below represents the decomposition of potassium chlorate.
    8·1 answer
  • 1. MnO₂ is an example of what type of bond?
    15·2 answers
  • Does somebody know the answer ?
    12·1 answer
  • What is the charge for H before electron share?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!