Ozone which is present in the stratospheric region of atmosphere is helpful for preventing harmful UV rays from reaching the surface of earth. Due to human activity, several compounds (specifically chlorofluorocarbons) are released in atmosphere. Due to inherent chemical stability of these compounds, the remain stable in lower region of atmosphere and slowly diffuse into stratosphere. On reaching the stratosphere, these compounds reacts with ozone and thereby depletes the effective concentration of ozone present in atmosphere. Hence, <span>the Montreal Protocol was signed in 1987 by major countries of the world. This aim of this protocol was to protect the stratospheric ozone layer by phasing out the production and consumption of ozone-depleting substances.</span>
the process of eroding or being eroded by wind, water, or other natural agents
Answer:
219.95 °C
Explanation:
Given data:
Volume of gas = 9.71 L
Initial pressure = 209 torr (209/760 = 0.275 atm)
Initial temperature = 10.1 °C (10.1 +273 = 283.1 K)
Final temperature = ?
Final pressure = 364 torr (364/760 =0.479 atm)
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
0.275 atm / 283.1 K = 0.479 atm/T₂
T₂ = 0.479 atm × 283.1 K/ 0.275 atm
T₂ = 135.6 atm. K /0.275 atm
T₂ = 493.1 K
Kelvin to °C:
493.1 K - 273.15 = 219.95 °C
Answer:
The change in the internal energy of the system -878 J
Explanation:
Given;
energy lost by the system due to heat, Q = -1189 J (negative because energy was lost by the system)
Work done on the system, W = -311 J (negative because work was done on the system)
change in internal energy of the system, Δ U = ?
First law of thermodynamics states that the change in internal energy of a system (ΔU) equals the net heat transfer into the system (Q) minus the net work done by the system (W).
ΔU = Q - W
ΔU = -1189 - (-311)
ΔU = -1189 + 311
ΔU = -878 J
Therefore, the change in the internal energy of the system -878 J
The reason why a wave get taller as it gets closer to shore is that the shallow water at the bottom of the wave makes the wave length smaller. Option B
<h3>What is a wave?</h3>
A wave is a disturbance that occurs along a medium which transmits energy. Now we now that waves travel from place to place. The horizontal distance that is travelled by a wave is what we call the wavelength of the wave.
As the wave approaches the shore, the wave tends to slow down because it is dragged from beneath. In the process, the wave grows taller. Thus, the reason why a wave get taller as it gets closer to shore is that the shallow water at the bottom of the wave makes the wave length smaller. Option B
Learn more about wavelength:brainly.com/question/13533093
#SPJ1