Answer:
B Genes determine specific traits while the chromosomes contain these genes
The correct option is A.
A chemical reaction is said to have reached an equilibrium stage if the rate of reaction of the forward reaction is equal to the rate of reaction of the reverse reaction. Two way arrows are usually used to depict equilibrium reactions. These arrows indicate that the chemical reaction can move both ways. At the equilibrium point the concentrations of both the reactants and the products are equal.
The appropriate response is oxygen. Cellular respiration is the procedure cells use to make vitality. Cells in our body join glucose and oxygen to make ATP and carbon dioxide. Oxygen is utilized as an electron acceptor inside the electron transport tie of vigorous breath to create adenosine triphosphate or ATP. This compound is a fundamental part in intracellular vitality exchange.
The question is incomplete, the complete question is;
Which statement describes a difference between electromagnetic and mechanical waves?
A. Mechanical waves cannot be longitudinal, but electromagnetic waves can.
B. Electromagnetic waves cannot move particles, but mechanical waves can.
C. Electromagnetic waves do not require a medium, but mechanical waves do.
D. Mechanical waves do not transfer energy, but electromagnetic waves do.
Answer:
Electromagnetic waves do not require a medium, but mechanical waves do.
Explanation:
A wave is defined as a disturbance along a medium which transfers energy. Waves may be classified as mechanical waves or electromagnetic waves based on their medium of propagation.
A mechanical wave requires a material medium for propagation. An example of a mechanical wave is sound waves. Sound waves are propagated in air.
Electromagnetic waves do not require a material medium for propagation. They can travel through space. An example of electromagnetic waves is light waves.
Explanation:
Concentration ;
The reaction see a change in pressure per second. By the ideal gas law, this quantity would correspond to a change in concentration, of
where the ideal gas constant .
By definition,
Therefore, for this particular reaction