Both the increase in the boling point and the depression on the freezing point are colliative properties.
This is, they are proportional to the number of particles dissolved in the solvent, which is measured by the molality of the solution and the factor i (Van'f Hoff).
The answer to the question is that 1) the boling point of a solution of water and calcium chloride at standard pressure will be higher than the normal boiling point of pure water, and 2) the freezing point of a solution of water and calcium chloride at standard pressure will be lower than the normal freezing point of pure water.
Answer:
Atoms
Explanation:
Energy, potential energy, is stored in the covalent bonds holding atoms together in the form of molecules. This is often called chemical energy.
Answer:
Mw = 179.845 g/mol
Explanation:
∴ w = 26.2 g
∴ 1 mol = 6.02 E23 molecules.......Avogadro's number
⇒N° moles = 8.77 E22 molecules * ( mol / 6.02 E23 molecules ) = 0.146 mol
⇒ Mw = 26.2 g / 0.146 mol = 179.845 g/mol
Answer:
14.93 g
Explanation:
First we <u>convert 1.2 x 10²³ atoms of arsenic (As) into moles</u>, using <em>Avogadro's number</em>:
- 1.2 x 10²³ atoms ÷ 6.023x10²³ atoms/mol = 0.199 mol As
Then we can<u> calculate the mass of 0.199 moles of arsenic</u>, using its<em> molar mass</em>:
- 0.199 mol * 74.92 g/mol = 14.93 g
Thus, 1.2x10²³ atoms of arsenic weigh 14.93 grams.