Answer:
A: Helium or Hydrogen
Explanation:
Terrestrial planets are the 4 inner most planets of the solar system which are mercury, venus, earth, Mars, while the giant planets are the 4 outer most which are Jupiter, Saturn, Uranus and Neptune.
Now, these outer most ones are the surface ones and are surrounded primarily by layers of hydrogen and helium gases.
Answer:
b. 2.28 M
Explanation:
The reaction of neutralization of NaOH with H2SO4 is:
2NaOH + H2SO4 → Na2SO4 + 2H2O
<em>Where 2 moles of NaOH react per mole of H2SO4</em>
<em />
To solve the concentration of NaOH we need to find the moles of H2SO4. Using the chemical equation we can find the moles of NaOH that react and with the volume the molar concentration as follows:
<em>Moles H2SO4:</em>
45.7mL = 0.0457L * (0.500mol/L) = 0.02285 moles H2SO4
<em>Moles NaOH:</em>
0.02285 moles H2SO4 * (2moles NaOH / 1 mol H2SO4) = 0.0457moles NaOH
<em>Molarity NaOH:</em>
0.0457moles NaOH / 0.020L =
2.28M
Right option:
<h3>b. 2.28 M</h3>
<span>Mass Number = (Atomic Number) + (Number of Neutrons) so you solve for the Number of Neutrons and you get:
Number of Neutrons = (Mass number) - (Atomic Number)
Mass Number equals protons plus neutrons, round atomic weight to nearest whole number
Atomic Number equals number of Protons</span>
<u>Answer:</u> The density of substance is 
<u>Explanation:</u>
To calculate density of a substance, we use the equation:

We are given:
Mass of substance = 61.6 g
Volume of substance = 
Putting values in above equation, we get:

Hence, the density of substance is 
Answer:
A.
Explanation:
While solar power does produce carbon dioxide emissions in the manufacturing processes required to produce panels and batteries, it does not produce CO2 while converting solar energy to electrical energy.