Answer:
(a) The horizontal ground reaction force 
(b) The vertical ground reaction force 
(c) The resultant ground reaction force 
Explanation:
Given
John mass , m = 65 kg
Horizontal acceleration , 
Vertical acceleration , 
(a) Using Newton's 2nd law in horizontal direction

=>
Thus the horizontal ground reaction force 
(b) Using Newton's 2nd law in vertical direction

=>
=>
Thus the vertical ground reaction force 
(c) Resultant ground reaction force is

=>
=>
Thus the resultant ground reaction force 
On driving your motorcycle in a circle of radius 75 m on wet pavement, the fastest you can go before you lose traction, assuming the coefficient of static friction is 0.20 is 147m/s
Friction helps to maintain the slipping of the vehicle on the road hence lays a very important role.
Maximum velocity of a road with friction is given by the formula,
v = μRg
where, v is the maximum velocity
μ is the coefficient of static friction
R is the radius of the circle road
g is the acceleration due to gravity
Given,
μ = 0.20
R = 75m
g = 9.8m/s²
On substituting the given values in the above formula,
v = 0.20× 75 ×9.8
v = 147m/s
So, the Maximum velocity of the wet road is 147m/s.
Learn more about Velocity here, brainly.com/question/18084516
#SPJ4
Answer:
The acceleration of the both masses is 0.0244 m/s².
Explanation:
Given that,
Mass of one block = 602.0 g
Mass of other block = 717.0 g
Radius = 1.70 cm
Height = 60.6 cm
Time = 7.00 s
Suppose we find the magnitude of the acceleration of the 602.0-g block
We need to calculate the acceleration
Using equation of motion

Where, s = distance
t = time
a = acceleration
Put the value into the formula



Hence, The acceleration of the both masses is 0.0244 m/s².