Answer:Expression given below
Explanation:
Given mass of spring
Compression in the spring
Let the spring constant be K
Using Energy conservation
potential energy stored in spring =Kinetic energy of Block


now conserving momentum


where
is the final velocity
Sure. The acceleration may be decreasing, but as long as it stays
in the same direction as the velocity, the velocity increases.
I think you meant to ask whether the body can have increasing velocity
with negative acceleration. That answer isn't simple either.
If the body's velocity is in the positive direction, then positive acceleration
means speeding up, and negative acceleration means slowing down.
BUT ... If the body's velocity is in the negative direction, then positive
acceleration means slowing down, and negative acceleration means
speeding up.
I know that's confusing.
-- Take a piece of scratch paper, write a 'plus' sign at one edge and
a 'minus' sign at the other edge. Those are the definitions of which
direction is positive and which direction is negative.
-- Then sketch some cars ... one traveling in the positive direction, and
one driving in the negative direction. Those are the directions of the
velocities.
-- Now, one car at a time:
. . . . . first push on the back of the car, in the direction it's moving;.
. . . . . then push on the front of the car, against its motion.
Each push causes the car to accelerate in the direction of the push.
When you see it on paper, all the positive and negative velocities
and accelerations will come clear for you.
Answer:
He requires 1 gram of mass.
Explanation:
The density is defined as:
(1)
Where m is the mass and V is the volume.
Then, m can be isolated from equation 1 in order to determine the mass.
(2)
Hence, he requires 1 gram of mass.
Answer:
C: Variation in the value of g as the pendulum bob moves along its arc.
Explanation:
The formula for period of a simple pendulum is given by;
T = 2π√(L/g)
Where;
L is length
g is acceleration due to gravity
Now, from this period equation, it is clear that the only thing that can affect the period of a simple pendulum are changes to its length and acceleration due to gravity.
Looking at the options, the only one that talks about either the length or gravity as being potential causes of the error is option C