To find the unbalanced force you have to use the formula *net force=resultant force=unbalanced force =outside force).
Answer:
I think it is 1.67
Explanation:
I multiply the 45 and 27 cause it says rate of which means to multiply.
Answer:
The frequency of oscillation of the simple pendulum is 0.49 Hz.
Explanation:
Given that,
Mass of the simple pendulum, m = 0.35 kg
Length of the string to which it is attached, l = 1 m
We need to find the frequency of oscillation. The frequency of oscillation of the simple pendulum is given by :

So, the frequency of oscillation of the simple pendulum is 0.49 Hz. Hence, this is the required solution.
Answer:
<em>Not slow down or speed up</em>.
Explanation:
Hitting the puck accelerates the speed of the puck from zero to the speed with which it leaves at the instance they lose contact. Since there is no friction between the puck and the ice, there will be no force decelerating or accelerating the hockey puck, allowing the puck to move away and remain in motion without speeding up or slowing down indefinitely theoretically.
The concepts necessary to solve this problem are framed in the expression of string vibration frequency as well as the expression of the number of beats per second conditioned at two frequencies.
Mathematically, the frequency of the vibration of a string can be expressed as

Where,
L = Vibrating length string
T = Tension in the string
Linear mass density
At the same time we have the expression for the number of beats described as

Where
= First frequency
= Second frequency
From the previously given data we can directly observe that the frequency is directly proportional to the root of the mechanical Tension:

If we analyze carefully we can realize that when there is an increase in the frequency ratio on the tight string it increases. Therefore, the beats will be constituted under two waves; one from the first string and the second as a residue of the tight wave, as well


Replacing
for n and 202Hz for 



The frequency of the tightened is 205Hz