Answer:
Explanation:
Given that,
Mass of ball m = 2kg
Ball traveling a radius of r1= 1m.
Speed of ball is Vb = 2m/s
Attached cord pulled down at a speed of Vr = 0.5m/s
Final speed V = 4m/s
Let find the transverse component of the final speed using
V² = Vr²+ Vθ²
4² = 0.5² + Vθ²
Vθ² = 4²—0.5²
Vθ² = 15.75
Vθ =√15.75
Vθ = 3.97 m/s.
Using the conservation of angular momentum,
(HA)1 = (HA)2
Mb • Vb • r1 = Mb • Vθ • r2
Mb cancels out
Vb • r1 = Vθ • r2
2 × 1 = 3.97 × r2
r2 = 2/3.97
r2 = 0.504m
The distance r2 to the hole for the ball to reach a maximum speed of 4m/s is 0.504m
The required time,
Using equation of motion
V = ∆r/t
Then,
t = ∆r/Vr
t = (r1—r2) / Vr
t = (1—0.504) / 0.5
t = 0.496/0.5
t = 0.992 second
Answer:
no poop comes out from your but
Explanation:
Answer:
it will be curved as in deceleration
Explanation:
Electric current can be generated by moving a metal wire through a magnetic field It is also different than static electricity, which is the accumulation of charges on a surface. Electric generators rotate a coil of wires through a magnetic field.
Answer:
This question is incomplete, a possible question would be to calculate the work done by the ball.
Work done = 8J
Explanation:
Work done by an object is calculated my multiplying the force by the distance.
The weight of this ball is 2.0N, which also represents the force exerted by the ball. The ball travels through a distance of 4m
Hence, work done = F × d
Work done = 2N × 4m
Work done = 8Nm or 8J