1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
34kurt
3 years ago
5

A common misconception is that an object always moves when a force acts on it. Why is this statement incorrect? Explain the conc

ept correctly. Why do you think some people have this misconception?
Physics
1 answer:
dsp733 years ago
3 0

Answer:

The statement is incorrect because, a force acting on an object does not necessarily have to produce motion.

People have the misconception that when a force acts on an object it always produces motion

Explanation:

The statement is incorrect because, a force acting on an object does not necessarily have to produce motion. It could be in static equilibrium where the net force is zero and produces not motion. The body could also be in dynamic equilibrium when  no net force acts on it moving at a constant velocity. But here we are concerned with static equilibrium since the body does not move at all.

People have the misconception that when a force acts on an object it always produces motion and, we have seen from the above tat its not always true.

You might be interested in
Two golf balls are hit from the same point on a flat field. Both are hit at an angle of 55 degree above the horizontal. Ball 2 h
juin [17]

Answer:

d_2 = 4d_1

Explanation:

The range or horizontal distance covered by a projectile projected with a velocity U at an angel of θ to the horizontal is given by

R = U²sin2θ/g

Let the range or horizontal distance of ball 1 with initial velocity U projected at an angle θ = 55° be

d_1 = U²sin2θ/g

Let the range or horizontal distance of ball 2 with initial velocity V = 2U projected at an angle θ = 55° be

d_2 = V²sin2θ/g

= (2U)²sin2θ/g

= 4U²sin2θ/g

= 4d_1   (since d_1 = U²sin2θ/g)

So, the ball 2 lands a distance d_2 = 4d_1 from the initial point.

4 0
3 years ago
Una grúa eleva un tubo de concreto de
frozen [14]

Explanation:

Hydraulic Pressure-Control, On-Off Deluge Valve

FP-400Y-5DC

The BERMAD model 400Y-5DC is an elastomeric, hydraulic line pressure operated deluge valve, designed specifically for advanced fire protection systems and the latest industry standards. The 400Y-5DC is activated by a hydraulically operated relay valve, through which opening and closing of the valve can be controlled either with a remote hydraulic command or with a wet pilot line with closed fusible plugs. An integral pressure reducing pilot valve ensures a precise, stable, pre-set downstream water pressure. The optional valve position indicator can include a limit switch suitable for Fire & Gas monitoring systems. The 400Y-5DC is ideal for systems that combine a remote wet pilot line with a high pressure water supply.

7 0
3 years ago
A 97.1 kg horizontal circular platform rotates freely with no friction about its center at an initial angular velocity of 1.63 r
sammy [17]

Answer:

the final angular velocity of the platform with its load is 1.0356 rad/s

Explanation:

Given that;

mass of circular platform m = 97.1 kg

Initial angular velocity of platform ω₀ = 1.63 rad/s

mass of banana m_{b} = 8.97 kg

at distance r = 4/5  { radius of platform }

mass of monkey m_{m} = 22.1 kg

at edge = R

R = 1.73 m

now since there is No external Torque

Angular momentum will be conserved, so;

mR²/2 × ω₀ = [ mR²/2 + m_{b} (\frac{4}{5} R)² + m_{m}R² ]w

m/2 × ω₀ = [ m/2 + m_{b} (\frac{4}{5} )² + m_{m} ]w

we substitute

w = 97.1/2 × 1.63 / ( 97.1/2 + 8.97(16/25) + 22.1

w = 48.55 × [ 1.63 / ( 48.55 + 5.7408 + 22.1 )

w = 48.55 × [ 1.63 / ( 76.3908 ) ]

w = 48.55 × 0.02133

w = 1.0356 rad/s

Therefore; the final angular velocity of the platform with its load is 1.0356 rad/s

8 0
3 years ago
A physical pendulum in the form of a planar object moves in simple harmonic motion with a frequency of 0.680 Hz. The pendulum ha
sineoko [7]

Answer:

Therefore, the moment of inertia is:

I=0.37 \: kgm^{2}

Explanation:

The period of an oscillation equation of a solid pendulum is given by:

T=2\pi \sqrt{\frac{I}{Mgd}} (1)

Where:

  • I is the moment of inertia
  • M is the mass of the pendulum
  • d is the distance from the center of mass to the pivot
  • g is the gravity

Let's solve the equation (1) for I

T=2\pi \sqrt{\frac{I}{Mgd}}

I=Mgd(\frac{T}{2\pi})^{2}

Before find I, we need to remember that

T = \frac{1}{f}=\frac{1}{0.680}=1.47\: s

Now, the moment of inertia will be:

I=2*9.81*0.340(\frac{1.47}{2\pi})^{2}  

Therefore, the moment of inertia is:

I=0.37 \: kgm^{2}

I hope it helps you!

7 0
3 years ago
An ambulance with a siren emitting a whine at 1790 Hz overtakes and passes a cyclist pedaling a bike at 2.36 m/s. After being pa
Deffense [45]

Answer:

The speed of the ambulance is 4.30 m/s

Explanation:

Given:

Frequency of the ambulance, f = 1790 Hz

Frequency at the cyclist, f' = 1780 Hz

Speed of the cyclist, v₀ = 2.36 m/s

let the velocity of the ambulance be 'vₓ'

Now,

the Doppler effect is given as:

f'=f\frac{v\pm v_o}{v\pm v_x}

where, v is the speed of sound

since the ambulance is moving towards the cyclist. thus, the sign will be positive

thus,

v_x=\frac{f}{f'}(v+v_o)-v

on substituting the values, we get

v_x=\frac{1790}{1780}(343+2.36)-343

or

vₓ = 4.30 m/s

Hence, <u>the speed of the ambulance is 4.30 m/s</u>

6 0
3 years ago
Other questions:
  • In the effects of kinetic energy, the slower an object goes, the longer that it will take to bring that object to a stop.
    13·1 answer
  • A PWC is overtaking another vessel. Which vessel must give way?
    15·1 answer
  • Hi, could someone please answer the first 3 questions of each planet
    15·1 answer
  • A Ferris wheel car is moving in a circular path at a constant speed. Is the car accelerating?
    9·1 answer
  • The world’s largest gold bar, worth ten million dollars in 2014, has a base measuring 46 cm ×
    15·1 answer
  • a 2000 kg car moving down the road runs into a 5000 kg stationary suv. The car applies a force of 1400 n on the suv what is the
    10·1 answer
  • Which quantity must be the same for two bodies in thermal equilibrium?
    5·1 answer
  • How u do this atomic mass
    14·2 answers
  • Sounds travel faster in Question 1 options: warmer air. cooler air. Temperature does not influence the speed of sound. a vacuum.
    5·1 answer
  • PLease help with this this is pretty hard for me i kinda get it but not fully
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!