This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ =
/ t₂
t₂ = t₁
t₂ = t₁
/ 
t₂ = (
/
)t₁
t₂ =
/
× t₁
so we substitute
t₂ =
0.0049 / 0.0018
× 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Answer:
1. Yes, they are all necessary.
2. Both written and verbal communication skills are of the utmost importance in business, especially in engineering. Communication skills boost you or your teams' performance because they provide clear information and expectations to help manage and deliver excellent work.
Answer:
If the heat engine operates for one hour:
a) the fuel cost at Carnot efficiency for fuel 1 is $409.09 while fuel 2 is $421.88.
b) the fuel cost at 40% of Carnot efficiency for fuel 1 is $1022.73 while fuel 2 is $1054.68.
In both cases the total cost of using fuel 1 is minor, therefore it is recommended to use this fuel over fuel 2. The final observation is that fuel 1 is cheaper.
Explanation:
The Carnot efficiency is obtained as:

Where
is the atmospheric temperature and
is the maximum burn temperature.
For the case (B), the efficiency we will use is:

The work done by the engine can be calculated as:
where Hv is the heat value.
If the average net power of the engine is work over time, considering a net power of 2.5MW for 1 hour (3600s), we can calculate the mass of fuel used in each case.

If we want to calculate the total fuel cost, we only have to multiply the fuel mass with the cost per kilogram.

Answer:
The pressure drop is 269.7N/m^2
Explanation:
∆P = ∆h × rho × g
∆h = 3.2cm = 3.2/100 = 0.032m, rho = 860kg/m^3, g = 9.8m/s^2
∆P = 0.032×860×9.8 = 269.7N/m^2