Answer:
f = 19,877 cm and P = 5D
Explanation:
This is a lens focal length exercise, which must be solved with the optical constructor equation
1 / f = 1 / p + 1 / q
where f is the focal length, p is the distance to the object and q is the distance to the image.
In this case the object is placed p = 25 cm from the eye, to be able to see it clearly the image must be at q = 97 cm from the eye
let's calculate
1 / f = 1/97 + 1/25
1 / f = 0.05
f = 19,877 cm
the power of a lens is defined by the inverse of the focal length in meters
P = 1 / f
P = 1 / 19,877 10-2
P = 5D
Answer:
A conservative force is a force with the property that the total work done in moving a particle between two points is independent of the path taken Equivalently if a particle travels in a closed loop the total work done by a conservative force is zero
Explanation:
Answer:D
Explanation:
It was right o khan academy
Answer:
15.07 ksi
Explanation:
Given that:
Pitch (P) = 5 teeth/in
Pressure angle (
) = 20°
Pinion speed (
) = 2000 rev/min
Power (H) = 30 hp
Teeth on gear (
) = 50
Teeth on pinion (
) = 20
Face width (F) = 1 in
Let us first determine the diameter (d) of the pinion.
Diameter (d) =
=
= 4 in
From the values of Lewis Form Factor Y for (
) = 20 ; at 20°
Y = 0.321
To find the velocity (V); we use the formula:


V = 2094.40 ft/min
For cut or milled profile; the velocity factor
can be determined as follows:


= 2.0472
However, there is need to get the value of the tangential load
, in order to achieve that, we have the following expression




Finally, the bending stress is calculated via the formula:



15.07 ksi
∴ The estimate of the bending stress = 15.07 ksi
Answer:
232.641374 mph
Explanation:
A race car has a maximum speed of 0.104km/s
Let X represent the speed in miles per hour
Therefore the speed in miles per hour can be calculated as follows
1 km/s = 2,236.936292 mph
0.104km/s = X
X = 0.104 × 2,236.936292
X = 232.641374
Hence the speed in miles per hour is 232.641374 mph