Answer:
θ = 66.90°
Explanation:
we know that

I= intensity of polarized light =1
I_o= intensity of unpolarized light = 13
putting vales we get

⇒
therefore θ = 66.90°
Answer:
the reason for the acceleration month that the coefficient of kinetic friction is less than the coefficient of satic frictionExplanation:
This exercise uses Newton's second law with the condition that the acceleration is zero, by the time the body begins to slide. At this point the balance of forces is
fr- w || = 0
The expression for friction force is that it is proportional to the coefficient of friction by normal.
fr = μ N
When the system is immobile, the coefficient of friction is called static coefficient and has a value, this is due to the union between the surface, when the movement begins some joints are broken giving rise to coefficient of kinetic friction less than static.
In consequence a lower friction force, which is why the system comes out of balance and begins to accelerate.
μ kinetic <μ static
In all this movement the normal with changed that the angle of the table remains fixed.
Consequently, the reason for the acceleration month that the coefficient of kinetic friction is less than the coefficient of satic friction
Answer: particles movement in solid< particles movement in liquids< particles movement in gases.
Explanation:
Atoms are very small, it is not easily seen even with the help of light microscopes. However, We use multiple models of atoms toexplain describe particles of an atom behaviour.
In solids, the particles are packed together tightly in an ordered arrangement. The particles only vibrate about their position in the structure because the particles are held together too strongly to allow movement. Thereby,making the particles MOVE THE LEAST
In liquids, the particles are close together and they move with random motion in the container. The particles move rapidly in all directions but there is more colision between itself even more than particles in gases. This means that the particles here are MORE FASTER THAN THAT OF THE SOLID.
Particles in gases move the FASTEST, more than the particles in solids and liquids. Although, the average speed of the particles depends on their mass and the temperature.