Answer:
low amplitude hope it will help you
Answer:
72 joules
Explanation:
The potential energy of that hammer is a function of its displacement against gravity. Considering that it fell with a velocity of 12 m/s, it was its displacement against gravity that gave it this velocity. It will continue to move until its displacement to gravity is zero.
since the body is in motion; it has converted its potential energy (mgh, m is mass, g is acceleration due to gravity, and h is the height) to kinetic energy (energy due to motion, 1/2mv^2; m = mass, v = velocity or speed)
therefore the potential energy is equal to kinetic energy
mgh = 1/2mv^2 = 1/2 *1kg* 12*12 = 72 joules.
Pretty sure it’s Force*Distance*Cos(theta)
Answer:
a = 2.72 [m/s2]
Explanation:
To solve this problem we must use the following kinematics equation:

where:
Vf = final velocity = 1200 [km/h]
Vo = initial velocity = 25 [km/h]
t = time = 2 [min] = 2/60 = 0.0333 [h]
1200 = 25 + (a*0.0333)
a = 35250.35 [km/h2]
if we convert these units to units of meters per second squared
![35250.35[\frac{km}{h^{2} }]*(\frac{1}{3600^{2} })*[\frac{h^{2} }{s^{2} } ]*(\frac{1000}{1} )*[\frac{m}{km} ] = 2.72 [\frac{m}{s^{2} } ]](https://tex.z-dn.net/?f=35250.35%5B%5Cfrac%7Bkm%7D%7Bh%5E%7B2%7D%20%7D%5D%2A%28%5Cfrac%7B1%7D%7B3600%5E%7B2%7D%20%7D%29%2A%5B%5Cfrac%7Bh%5E%7B2%7D%20%7D%7Bs%5E%7B2%7D%20%7D%20%5D%2A%28%5Cfrac%7B1000%7D%7B1%7D%20%29%2A%5B%5Cfrac%7Bm%7D%7Bkm%7D%20%5D%20%3D%202.72%20%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D)
It is B, Microcephaly. Hope I helped! :))