Answer:
Average velocity

Average speed,

Explanation:
(a)Average velocity
We have to find the average velocity. We know that velocity is defined as the rate of change of displacement with respect to time.
To find the average velocity we have to find the total displacement.
since displacement along east direction is 50m
and displacement along west=40m
so total displacement,

total time,

therefore, average velocity

(b)Average Speed:
Average speed is defined as the ratio of total distance to the total time
it means
Average speed= total distance/total time
here total distance,

and total time,

therefore,
Average speed,

There is no difference. 5 is the same as 5.0
Answer:
Speed of 0.08 kg mass when it will reach to the bottom position is 1.94 m/s
Explanation:
When rod is released from rest then due to unbalanced torque about the hinge the system will rotate
Now moment of inertia of the system is given as

now we have



now we have

so we have


now by energy conservation we can say work done by gravity must be equal to change in kinetic energy
so we have



Now speed of 0.08 kg mass when it reaches to bottom point is given as



This question is checking to see whether you understand the meaning
of "displacement".
Displacement is a vector:
-- Its magnitude (size) is the distance between the start-point and
the end-point, no matter what route might have been followed along
the way.
-- Its direction is the direction from the start-point to the end-point.
Talking about the Earth's orbit around the sun, we can forget about
the direction of the displacement, and just talk about its magnitude
(size).
If we pretend that the sun is not moving and dragging the whole
solar system along with it, then what do we see the Earth doing
in one year ?
We mark the place where the Earth is at the stroke of midnight
on New Year's Eve. Then we watch it as it swings around through
this gigantic orbit, all the way around the sun, and in a year, it's back
to the same point that we marked !
So what's the magnitude of the displacement in exactly one year ?
It's the distance between the start-point and the end-point. But the
Earth came back to the same place it started from, so there's no
separation at all between the start-point and the end-point.
The Earth covered a huge distance in that year, but the displacement
is zero.
Answer:
1 kg
Explanation:
The container has negligible mass and no heat is loss to the surrounding.
Mass of ice = 0.4kg, initial temperature of ice = -29oC, final temperature of the mixture = 26oC, mass of water (m2) = ?kg, initial temperature of water = 80oC, c ( specific heat capacity of water ) = 4200J/kg.K, Lf = heat of fusion of water = 3.36 × 10^5 J/kg
Using the formula:
Quantity of heat gain by ice = Quantity of heat loss by water
Quantity of heat gain by ice = mass of ice × heat of fusion of ice + mass of water × specific heat capacity of water = (0.4 × 3.36 × 10^ 5) + (0.4 × 4200 × (26- (-29) = 13.44 × 10^4 + 9.24 × 10^ 4 = 22.68 × 10^4 J
Quantity of heat loss by water = m2cΔT
Quantity of heat loss by water = m2 ×4200× (80 - 26) = m(226800)
since heat gain = heat loss
22.68 × 10^4 = 226800 m2
divide both side by 226800
226800 / 226800 = m2
m2 = 1 kg