<span>The angular momentum of a particle in orbit is
l = m v r
Assuming that no torques act and that angular momentum is conserved then if we compare two epochs "1" and "2"
m_1 v_1 r_1 = m_2 v_2 r_2
Assuming that the mass did not change, conservation of angular momentum demands that
v_1 r_1 = v_2 r_2
or
v1 = v_2 (r_2/r_1)
Setting r_1 = 40,000 AU and v_2 = 5 km/s and r_2 = 39 AU (appropriate for Pluto's orbit) we have
v_2 = 5 km/s (39 AU /40,000 AU) = 4.875E-3 km/s
Therefore, </span> the orbital speed of this material when it was 40,000 AU from the sun is <span>4.875E-3 km/s.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
Answer:
Robert Hooke used an early microscope to observe a cork sample. How did this help contribute to cell theory? It helped to show that cells contain water. ... It helped to show that some cells are visible to the naked eye.
Explanation:
If your teacher checks if it was copied just put it in your on words
or one hailstone we have;
Force = Mass X acceleration = 0.005kg x 9.8.} This is when the hailstone is not inclined at an angle.
When the hailstone is inclined at an angle of 45, then the component of force along the glass window will be F =0.005kg x 9.8 x sin45= 0.005kg x 9.8 x 0.707= 0.0346N.
Therefore, total force for the 500 hailstones would be 500x0.0346N=17.32N
This force is acting on an area equal to 0.600m2
Pressure = Force per unit area = 17.32N/0.600m2 = 28.9Pa
Friction causes resistance against a moving object. It can cause an object to slow down, or stop when there’s enough friction…. I hope this helps
Answer:
The horizontal distance is 136.6 m.
Explanation:
Given that,
Initial speed = 38 m/s
Angle = 34°
Suppose, Calculate the horizontal distance
in meters the ball has traveled when it returns to ground level.
We need to calculate the horizontal distance
Using formula of range

Where, v= speed
g = acceleration due to gravity
Put the value into the formula


Hence, The horizontal distance is 136.6 m.