1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry_Shevchenko [17]
3 years ago
8

A transverse standing wave is set up on a string that is held fixed at both ends. The amplitude of the standing wave at an antin

ode is 2.20 mm and the speed of propagation of transverse waves on the string is 260 m/s. The string extends along the x-axis, with one of the fixed ends at x= 0, so that there is a node at x =0. The smallest value of x where there is an antinode is x= 0.150m.
Required:
a. What is the maximum transverse speed of a point on the string at an antinode?
b. What is the maximum transverse speed of a point on the string at x = 0.075 m?
Physics
1 answer:
ZanzabumX [31]3 years ago
8 0

Answer:

a) the maximum transverse speed of a point on the string at an antinode is 5.9899 m/s

b) the maximum transverse speed of a point on the string at x = 0.075 m is 4.2338 m/s

Explanation:

Given the data in the question;

as the equation of standing wave on a string is fixed at both ends

y = 2AsinKx cosωt

but k = 2π/λ and ω = 2πf

λ = 4 × 0.150 = 0.6 m

and f =  v/λ = 260 / 0.6 = 433.33 Hz

ω = 2πf = 2π × 433.33 = 2722.69

given that A = 2.20 mm = 2.2×10⁻³

so V_{max1} = A × ω

V_{max1} = 2.2×10⁻³ × 2722.69 m/s

V_{max1} =  5.9899 m/s

therefore, the maximum transverse speed of a point on the string at an antinode is 5.9899 m/s

b)

A' = 2AsinKx

= 2.20sin( 2π/0.6 ( 0.075) rad )

= 2.20 sin(  0.7853 rad ) mm

= 2.20 × 0.706825 mm

A' = 1.555 mm = 1.555×10⁻³

so

V_{max2} = A' × ω

V_{max2} = 1.555×10⁻³ × 2722.69

V_{max2} = 4.2338 m/s

Therefore, the maximum transverse speed of a point on the string at x = 0.075 m is 4.2338 m/s

You might be interested in
DEVELOP SCIENCE CONCEPTS What kind of habitat do animals in<br> your community live in?
hammer [34]

Answer:

We live in a very adaptable environment. If we cannot adapt to the environment, we will not be able to survive.

Explanation:

5 0
3 years ago
g You shine orange laser light that has a wavelength of 600 nm through a narrow slit. The slit forms a diffraction pattern on a
zimovet [89]

Answer:

 λ = 3 10⁻⁷ m,   UV laser

Explanation:

The diffraction phenomenon is described by the expression

         a sin θ = m λ

let's use trigonometry

         tan θ = y / L

as in this phenomenon the angles are small

        tan θ = \frac{sin \ \theta}{cos \ \theta} = sin θ

        sin θ = y / L

we substitute

      a y / L = m  λ

let's apply this equation to the initial data

       a  0.04 / L = 1 600 10⁻⁹

       a / L = 1.5 10⁻⁵

now they tell us that we change the laser and we have y = 0.04 m for m = 2

      a 0.04 / L = 2  λ

       a / L = 50  λ

we solve the two expression is

         1.5 10⁻⁵ = 50  λ

          λ = 1.5 10⁻⁵ / 50

          λ = 3 10⁻⁷ m

    UV laser

3 0
3 years ago
Bob is pushing a box across the floor at a constant speed of 1.5 m/s, applying a horizontal force whose magnitude is 60 n. alice
earnstyle [38]

120n

since the speed is doubled, her force is doubled

7 0
4 years ago
An explorer is caught in a whiteout (in which the snowfall is so thick that the ground cannot be distinguished from the sky) whi
mel-nik [20]

Answer:

Explanation:

All the displacement will be converted into vector, considering east as x axis and north as y axis.

5.3 km north

D = 5.3 j

8.3 km at 50 degree north of east

D₁= 8.3 cos 50 i + 8.3 sin 50 j.

= 5.33 i + 6.36 j

Let D₂ be the displacement which when added to D₁ gives the required displacement D

D₁ + D₂ = D

5.33 i + 6.36 j + D₂ = 5.3 j

D₂ = 5.3 j - 5.33i - 6.36j

= - 5.33i - 1.06 j

magnitude of D₂

D₂²= 5.33² + 1.06²

D₂ = 5.43 km

Angle θ

Tanθ = 1.06 / 5.33

= 0.1988

θ =11.25 ° south of due west.

4 0
3 years ago
The wing of an airplane experiences the forces as depicted in the vector diagram to the right. Using both one and two dimensiona
Vedmedyk [2.9K]

Answer:

A.) 3605.6 N

B.) 33.7 degree

Explanation:

To find the result force acting on the wing of the airplane, we need to resolve the forces into x and y components

Resolving into x component :

Sum of forces = 3500 - 500 = 3000N

Resolving into y component:

Sum of forces = 2000N

Resultant force Fr = sqrt ( Fx^2 + Fy^2)

Fr = sqrt ( 3000^2 + 2000^2 )

Fr = sqrt ( 9000000 + 4000000 )

Fr = sqrt ( 13000000)

Fr = 3605.6 N

Therefore, resultant force acting on the wing is 3605.6 N

The direction of the vector will be:

Tan Ø = Fy / Fx

Substitute Fx and Fy into the formula

Tan Ø = 2000 / 3000

Tan Ø = 0.66666

Ø = tan^-1(0. 66666)

Ø = 33.7 degree.

6 0
4 years ago
Other questions:
  • When the posted speed limit is 70 mph, the minimum speed limit is ___________ mph.
    14·2 answers
  • A 1.0-kg ball has a velocity of 12 m/s downward just before it strikes the ground and bounces up with a velocity of 12 m/s upwar
    6·1 answer
  • What weighs exactly 500 grams in the house?
    8·1 answer
  • 2) Write two examples in which an object undergoes more than one type of motion at the same time.
    13·1 answer
  • 24. Compare and contrast the 'Big Bang Theory' with the 'Creation Model for the origin of the
    14·1 answer
  • Monochromatic light falls on two very narrow slits 0.047 mm apart. Successive fringes on a screen 6.60 m away are 8.9 cm apart n
    15·1 answer
  • . A paper airplane of .025kg is falling at a rate 2m/s2. What is the amount of net force?
    9·1 answer
  • How fast can a human go before they reach terminal velocity?​
    13·1 answer
  • PLEASE HURRY Which of the following measurements is a measurement of velocity?
    14·1 answer
  • A 20 kg box has an initial velocity of 2 m/s starting at the bottom of a 30-degree inclined plane. A person pushes on the box di
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!