Answer:
a)11.25 J
b)Number of revolution = 1
Explanation:
Given that
Radius ,r= 0.8 m
m= 0.3 kg
Initial speed ,u= 10 m/s
final speed ,v= 5 m/s
a)
Initial energy


KEi= 15 J
Final kinetic energy


KEf=3.75 J
The energy transformed from mechanical to internal = 15 - 3.75 J = 11.25 J
b)
The minimum value to complete the circular arc

Now by putting the values

V= 2.82 m/s
So kinetic energy KE


KE=1.19 J
ΔKE= KEi - KE
ΔKE= 15- 1.19 J
ΔKE=13.80 J
The minimum energy required to complete 2 revolutions = 2 x 11.25 J
= 22.5 J
Here 22.5 J is greater than 13.8 J.So the particle will complete only one revolution.
Number of revolution = 1
Explanation:
It is given that,
Magnetic field, B = 0.15 T
Charge on a proton, 
Mass of a proton, 
The cyclotron frequency is given by :


f = 2286785.40 Hz
or


Hence, this is the required solution.
The length of the colour attribute is 6 characters.
<h3>What is a colour attribute?</h3>
Each colour has a distinct look based on three essential characteristics: hue, chroma (saturation), and value (lightness). It's critical to use all three of these properties when describing colour to appropriately identify it and distinguish it from others.
<h3>What is the use of colour attributes?</h3>
The HTML <font> color Attribute specifies the text color within the font element. Values of Attributes: colour name: It uses the colour name to set the text colour.
It should be noticed that colours are represented by the hex triplet.
Learn more about colour attributes here:
brainly.com/question/18071208
#SPJ4
Answer:
Multiply the air pressure by the area of the tabletop.
Explanation:
The relationship between pressure, force and area is given by:

where in this case, p is the air pressure, F is the force exerted and A the area of the tabletop. By re-arranging the equation, we can solve for F, the force exerted:

So, the correct answer is:
The force exerted on the tabletop can be found by multiplying the air pressure by the area of the tabletop.
Take a look at a simple reaction like the one below:
In this reaction some reactant A is turned into some product B. The rate of reaction can be represented by a decrease in concentration of A over time or as the increase of B over time. This is written: