<h2>
Option 2 is the correct answer.</h2>
Explanation:
Elastic collision means kinetic energy and momentum are conserved.
Let the mass of object be m and M.
Initial velocity object 1 be u₁, object 2 be u₂
Final velocity object 1 be v₁, object 2 be v₂
Initial momentum = m x u₁ + M x u₂ = 3 x 8 + M x 0 = 24 kgm/s
Final momentum = m x v₁ + M x v₂ = 3 x v₁ + M x 6 = 3v₁ + 6M
Initial kinetic energy = 0.5 m x u₁² + 0.5 M x u₂² = 0.5 x 3 x 8² + 0.5 x M x 0² = 96 J
Final kinetic energy = 0.5 m x v₁² + 0.5 M x v₂² = 0.5 x 3 x v₁² + 0.5 x M x 6² = 1.5 v₁² + 18 M
We have
Initial momentum = Final momentum
24 = 3v₁ + 6M
v₁ + 2M = 8
v₁ = 8 - 2M
Initial kinetic energy = Final kinetic energy
96 = 1.5 v₁² + 18 M
v₁² + 12 M = 64
Substituting v₁ = 8 - 2M
(8 - 2M)² + 12 M = 64
64 - 32M + 4M² + 12 M = 64
4M² = 20 M
M = 5 kg
Option 2 is the correct answer.
Answer:
It would not be possible the cohesion among water molecules by the polar covalent bonding.
Well, to understand this in a better way, let's begin by explaining that water is special due to its properties, which makes this fluid useful for many purposes and for the existence of life.
In this sense, one of the main properties of water is cohesion (molecular cohesion), which is the attraction of molecules to others of the same type. So, water molecule (
) has 2 hydrogen atoms attached to 1 oxygen atom and can stick to itself through hydrogen bonds.
How is this possible?
By the polar covalent bonding, a process in which electrons are shared unequally between atoms, due to the unequal distribution of electrons between atoms of different elements. In other words: slightly positive and slightly negative charges appear in different parts of the molecule.
Now, it can be said that a water molecule has a negative side (oxygen) and a positive side (hydrogen). This is how the oxygen atom tends to monopolize more electrons and keeps them away from hydrogen. Thanks to this polarity, water molecules can stick together.
Answer:0,002 = 2 x 10⁻³
Explanation:
0,002 = 2 / 1000 = 2 / 10³ = 2 x 10⁻³
M1U1 + M2V2 = (M1+M2)V, where M1 is the mass of the moving car, M2 is the mass of the stationary car, U1 is the initial velocity, and V is the common velocity after collision.
therefore;
(1060× 16) + (1830 ×0) = (1060 +1830) V
16960 = 2890 V
V = 5.869 m/s
The velocity of the cars after collision will be 5.689 m/s
Answer:
451.13 J/kg.°C
Explanation:
Applying,
Q = cm(t₂-t₁)............... Equation 1
Where Q = Heat, c = specific heat capacity of iron, m = mass of iron, t₂= Final temperature, t₁ = initial temperature.
Make c the subject of the equation
c = Q/m(t₂-t₁).............. Equation 2
From the question,
Given: Q = 1500 J, m = 133 g = 0.113 kg, t₁ = 20 °C, t₂ = 45 °C
Substitute these values into equation 2
c = 1500/[0.133(45-20)]
c = 1500/(0.133×25)
c = 1500/3.325
c = 451.13 J/kg.°C