Answer:
• The greater the amplitude, the louder the sound
• The lower the amplitude, the lower the sound
I hope it helped you! ^^
Answer:
The new velocity of the string is 100 centimeters per second (1 meter per second).
Explanation:
The speed of a wave through a string (
), in meters per second, is defined by the following formula:
(1)
Where:
- Tension, in newtons.
- Length of the string, in meters.
- Mass of the string, in kilograms.
The expression for initial and final speeds of the wave are:
Initial speed
(2)
Final speed

(3)
By (2), we conclude that:
If we know that
, then the new speed of the wave in the string is
.
Answer:
<u>At 268.82°C</u> volume occupied by nitrogen is 10 liters at pressure of 900 torr.
Explanation:
Given:
Volume of a sample of nitrogen = 5.50 liters
Pressure = 900 torr
Temperature = 25°C
To find the temperature at which the nitrogen will occupy 10 liters volume at same pressure.
Solution:
Since the pressure is kept constant, so we can apply the temperature-volume law also called the Charles Law.
Charles Law states that the volume of a gas held at constant pressure is directly proportional to the temperature of the gas in Kelvin.
Thus, we have :
∝ 

where
is a constant.
For two samples of gases, the law can be given as:

From the data given:



We need to find
.
Plugging in values in the formula.

Multiplying both sides by
.


Multiplying both sides by 



Thus, at 268.82°C volume occupied by nitrogen is 10 liters at pressure of 900 torr.
I gotchu, the answer’s elastic potential energy.