For this question, lets apply Avagadro's law
when Pressure and temperature are constant, the volume occupied is directly proportional to the number of moles of gases.

where V-volume, n-number of moles and k - constant
Therefore at 2 instances

where V1 and n1 are for 1st instance
and V2 and n2 are for 2nd instance
therefore

V1 = 2.4 L
n1 = 3.7 mol
n2 = 3.7 + 1.6 = 5.3 mol
since more He moles are added at the 2nd instance its the sum of the moles.
V2 needs to be calculated

V2 = 2.4 x 5.3 / 3.7
= 3.4 L
Answer is 1st option 3.4 L
Answer:
vertebral column
Explanation:
A lamprey's body has smooth, scale-less skin and two dorsal fins, but has no lateral line, no vertebrae, no swim bladder, and no paired fins.
Tuna is vertebrate.
So we found out that chlorine had an overall oxidation number of plus three, and that's it for this one.
Answer:
HBr is a strong acid
Explanation:
KBr is a salt which makes a base . also KOH is a base
Answer:
THE CURRENT REQUIRED TO PRODUCE 193000 C OF ELECTRICITY IS 35.74 A.
Explanation:
Equation:
Al3+ + 3e- -------> Al
3 F of electricity is required to produce 1 mole of Al
3 F of electricity = 27 g of Al
If 18 g of aluminium was used, the quantity of electricity to be used up will be:
27 g of AL = 3 * 96500 C
18 G of Al = x C
x C = ( 3 * 96500 * 18 / 27)
x C = 193 000 C
For 18 g of Al to be produced, 193000 C of electricity is required.
To calculate the current required to produce 193 000 C quantity of electricity, we use:
Q = I t
Quantity of electricity = Current * time
193 00 = I * 1.50 * 60 * 60 seconds
I = 193 000 / 1.50 * 60 *60
I = 193 000 / 5400
I = 35.74 A
The cuurent required to produce 193,000 C of electricity by 18 g of aluminium is 35.74 A