KHDMDCM.
Now go from Kilometer to Centimeter: 5.
Move the decimal 5 places to the right: 67,500,000 centimeters.
Hope this helps :)
Answer:51.44 units
Explanation:
Given
x component of vector is 
y component of vector is 
so position vector is

Magnitude of vector is


|r|=51.44 units
Direction

vector is in 2nd quadrant thus


The acceleration due to gravity of the planet X is 1 m/s².
The given parameters;
- height above the ground, h = 100 m
- initial velocity of the rock, u = 15 m/s
- time of motion of the rock, t = 10 s
The acceleration due to gravity is calculated as follows;

Thus, the acceleration due to gravity of the planet X is 1 m/s²
Learn more here: brainly.com/question/24564606
Answer:
The result of force distributed over an area – Pressure = Force(in Newton's – N)/area (m 2 ) Pascal (Pa) – SI unit for Pressure – Named after.
I hope it help you,
<h3>Follow me for more answer.</h3>
Answer:
819.78 m
Explanation:
<u>Given:</u>
- OA = range of initial position of the airplane from the point of observation = 375 m
- OB = range of the final position of the airplane from the point of observation = 797 m
= angle of the initial position vector from the observation point = 
= angle of the final position vector from the observation point = 
= displacement vector from initial position to the final position
A diagram has been attached with the solution in order to clearly show the position of the plane.

Displacement vector of the airplane will be the shortest line joining the initial position of the airplane to the final position of the airplane which is given by:

The magnitude of the displacement vector = 
Hence, the magnitude of the displacement of the plane is 819.67 m during the period of observation.