<span>If a lever has a constant force applied at 90∘ to the lever arm at a fixed distance from the pivot point (point of rotation), the torque on the lever is given by Torque = force (at 90∘ to lever arm) × distance to pivot point
Force should be perpendicular to the lever arm
Therefore; you would do 15N X 2.0 m = 30 Nm or 30Joules</span>
It's pretty easy to balance equations! Basically you want to make sure that the number of each compound is equal on both sides of the arrow.
For example number one is
Fe + H2SO4 -> Fe2(SO4)3 + H2
A 3 in front of H2SO4 because there's a subscript of 3 on the right side.
Then a 3 in front of H2 because of the previous step.
Then add a 2 in front of Fe because of the 2 subscript in Fe2(SO4)3
Then add a 1 in front of Fe2(SO4)3 because you already have an equal number of each element.
<u>2</u>Fe + <u>3</u>H2SO4 -> <u>1</u>Fe2(SO4)3 + <u>3</u>H2
I hope this explanation helps! You should really do your homework because practice is everything when it comes to chemistry. You'll need to know how to do it for exams.
Looking at the following answers, and considering the definition of a biological community I believe the answer is D.
Answer:
<h2>- It could be stretched into a thin wire.</h2>
Explanation:
As per the question, the most rational claim that the student can make about the aluminum metal is that 'it could be stretched into a thin wire' without breaking which shows its ductility. It is one of the most significant characteristics of a metal. Metals can conduct electricity in any state and not only when melted. Thus, option A is wrong. Options C and D are incorrect as metals neither have the same shape always nor do they break on hitting with a hammer. Therefore, <u>option E</u> is the correct answer.
The answer is B. A good way determine this is how far right the element is on the periodic table. The further right the element is, the more electronegative it is meaning it is more willing to accept an electron. This can be explained using the valence electrons and how many need to be added or removed to complete the octet. The further right you are, the easier it is for the element to just gain a few electrons instead of loose a bunch. Noble gases are the exception to this since they don't normally react though.