Could you post another question with a photo? I am sorry...
Answer:
34,6g of (NH₄)₂SO₄
Explanation:
The boiling-point elevation describes the phenomenon in which the boiling point of a liquid increases with the addition of a compound. The formula is:
ΔT = kb×m
Where ΔT is Tsolution - T solvent; kb is ebullioscopic constant and m is molality of ions in solution.
For the problem:
ΔT = 109,7°C-108,3°C = 1,4°C
kb = 1.07 °C kg/mol
Solving:
m = 1,31 mol/kg
As mass of X = 600g = 0,600kg:
1,31mol/kg×0,600kg = 0,785 moles of ions. As (NH₄)₂SO₄ has three ions:
0,785 moles of ions×
= 0,262 moles of (NH₄)₂SO₄
As molar mass of (NH₄)₂SO₄ is 132,14g/mol:
0,262 moles of (NH₄)₂SO₄×
= <em>34,6g of (NH₄)₂SO₄</em>
<em></em>
I hope it helps!
17.93 grams of oxygen gas occupy 12.3L of space at 109.4 kPa and 15.4°C. Details about how to calculate mass can be found below.
<h3>How to calculate mass?</h3>
The mass of a given gas can be calculated by multiplying the number of moles of the substance by its molar mass.
However, the number of moles of the gas must be calculated first as follows:
PV = nRT
Where;
- P = pressure = 1.0796941atm
- V = volume = 12.3L
- n = number of moles
- T = temperature = 288.4K
- R = gas law constant = 0.0821 Latm/molK
1.079 × 12.3 = n × 0.0821 × 288.4
13.27 = 23.68n
n = 13.27/23.68
n = 0.56mol
Mass = 0.56 × 32
mass of oxygen gas = 17.93g
Therefore, 17.93 grams of oxygen gas occupy 12.3L of space at 109.4 kPa and 15.4°C.
Learn more about mass at: brainly.com/question/19694949
Answer:
<h3>The answer is 4.15 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of object = 8.3 g
volume = final volume of water - initial volume of water
volume = 8 - 6 = 2 mL
So we have

We have the final answer as
<h3>4.15 g/mL</h3>
Hope this helps you
The part of an atom that is actively exchanged or shared in a chemical bond is ELECTRON.
An atom is made up of three sub particles, which are electron, proton and neutron. The proton and the neutron are located in the nucleus of the atom and they make up the major mass of the atom. The electron is located outside of the nucleus and it orbit around the nucleus; it has negligible mass. The electron is negatively charged and because it is located outside of the nucleus, it is the one that is always involved in chemical reactions. There are different types of chemical bonds in chemical compounds and it is electrons that are normally used to form these bonds. During bond formation, electrons can either be donated or shared.