Answer:
You need the Delta H fusion for water. Multiply that by 50 grams. Then multiply 50 g x 4.184 x 65 to get joules to raise water to 65 degrees. Add these values together to get total joules.
Explanation:
The four quantum numbers are:
principle quantum number: this number describes the energy of orbitals. It describes the most probable distance between the electron and the nucleus.
angular quantum number: this number describes the shape of orbitals, and thus, describes the angular distribution.
magnetic quantum number: this number describes the number of orbitals and how they are oriented within the subshell
spin quantum number: this number determines the direction of the spin of the electron.
Based on the above, the quantum number that distinguishes the different shapes of the orbitals is the angular quantum number
<u>Answer:</u> The activation energy for the reaction is 40.143 kJ/mol
<u>Explanation:</u>
To calculate activation energy of the reaction, we use Arrhenius equation for two different temperatures, which is:
![\ln(\frac{K_{317K}}{K_{278K}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B317K%7D%7D%7BK_%7B278K%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 317 K = 
= equilibrium constant at 278 K = 
= Activation energy = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = 278 K
= final temperature = 317 K
Putting values in above equation, we get:
![\ln(\frac{3.050\times 10^8}{3.600\times 10^{7}})=\frac{E_a}{8.314J/mol.K}[\frac{1}{278}-\frac{1}{317}]\\\\E_a=40143.3J/mol=40.143kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B3.050%5Ctimes%2010%5E8%7D%7B3.600%5Ctimes%2010%5E%7B7%7D%7D%29%3D%5Cfrac%7BE_a%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B278%7D-%5Cfrac%7B1%7D%7B317%7D%5D%5C%5C%5C%5CE_a%3D40143.3J%2Fmol%3D40.143kJ%2Fmol)
Hence, the activation energy for the reaction is 40.143 kJ/mol
Answer:
Caustic soda
Explanation:
The fractional distillation of air is carried out on liquid air. Before air is liquified, the carbon dioxide content of air is removed using caustic soda. The air is then compressed to a pressure of about 200 atm, sudden expansion of the gas leads to cooling. The process continues until air becomes liquid at -200°C.
Fractional distillation of liquid air usually produces nitrogen and oxygen as major products. nitrogen in obtained first since it has a lower boiling point than oxygen. The gases are then dried, compressed and stored in cylinders.