Answer: True
Explanation:
Weak electrolytes are those solutions which do not undergo complete dissociation when dissolved in water. The dissociation of weak electrolytes is given by an equilibrium.
Example: 
Strong electrolytes are those solutions which undergo complete dissociation when dissolved in water. The dissociation of strong electrolytes is given by a right arrow.
Example: 
Thus the degree to which various compounds will dissociate in solution varies greatly is true.

Actually Welcome to the Concept of the Ionic bonds.
Since Sodium (Na) is a cation and Chlorine (Cl) is a Anion, they both form a Ionic bond called as NaCl (common salt)
So answer is, Na and Cl
Answer:
<em>Alkali metals are among the most reactive metals. This is due in <u>part to their larger atomic radii and low ionization energies.</u> They tend to donate their electrons in reactions and have an oxidation state of +1. ... All these characteristics can be attributed to these elements' large atomic radii and weak metallic bonding.</em>
Explanation:
<em>I </em><em>hope</em><em> it</em><em> will</em><em> help</em><em> you</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>#</em><em>C</em><em>A</em><em>R</em><em>R</em><em>Y</em><em>O</em><em>N</em><em>L</em><em>E</em><em>R</em><em>A</em><em>N</em><em>I</em><em>N</em><em>G</em>
Answer:
- In general, polar solutes are most soluble in highly polar solvents.
Explanation:
The general rule is "like dissolves like" which means that <em>polar solvents </em>dissolve polar (or ionic) <em>solutes</em> and <em>non-polar solvents</em> dissolve non-polar solutes.
In order for a solvent dissolve a solute, the strength of the interacttion (force) between the solute and the solvent units (atoms, molecules, or ions) must be stronger than the strength of the forces that keep together he particles of the pure substances (known as intermolecular forces).
Since the nature of the interactions between the units are electrostatic, the more polar is the solvent the better it will be able to attract and surround the solute particles, keeping them separated and in solution. That mechanism explains why polar solutes will be most soluble in highly polar solvents.