Answer:
Water acts as a solvent of carbon dioxide excreted from tissues, in blood and helps in regulating pH (because it forms carbonic acid that lowers pH when it tends to get higher). Blood pH should be maintained at about 7.4. One major reason is that the structure of protein is dependent ton pH because pH determines its ionization hence also affecting the charges and interaction between side groups of amino acids. A change in pH may, therefore, denature proteins and negatively affect cellular functions.
Explanation:
To get more on how water acts as a universal solvent check out brainly.com/question/7007192
Answer:
I can't draw diagrams on this web site but I can do with numbers I think. So an electron is moved from n = 1 to n = 5. I'm assuming I've interpreted the problem correctly; if not you will need to make a correction. I'm assuming that you know the electron in the n = 1 state is the ground state so the 4th exited state moves it to the n = 5 level.
n = 5 4th excited state
n = 4 3rd excited state
n = 3 2nd excited state
n = 2 1st excited state
n = 1 ground state
Here are the possible spectral lines.
n = 5 to 4, n = 5 to 3, n = 5 to 2, n = 5 to 1 or 4 lines.
n = 4 to 3, 4 to 2, 4 to 1 = 3 lines
n = 3 to 2, 3 to 1 = 2 lines
n = 2 to 1 = 1 line. Add 'em up. I get 10.
b. The Lyman series is from whatever to n = 1. Count the above that end in n = 1.
c.The E for any level is -21.8E-19 Joules/n^2
To find the E for any transition (delta E) take E for upper n and subtract from the E for the lower n and that gives you delta E for the transition.
So for n = 5 to n = 1, use -Efor 5 -(-Efor 1) = + something which I'll leave for you. You could convert that to wavelength in meters with delta E = hc/wavelength. You might want to try it for the Balmer series (n ending in n = 2). I think the red line is about 650 nm.
Explanation:
Answer:
it is b because its releases heat in to all directions and not b because it staying inside and not releasing anything :)
Explanation:
<span>The molar heat of solution of NaOH is -445,100 J/mol. To compute much heat (in J) will be released if 40.00 g of NaOH are dissolved in water, we first convert the given grams of NaOH to moles of NaOH, and use the given molar heat of solution to compute for the energy. (Using dimensional analysis):
40 g NaOH x (1 mol NaOH/ 40 g NaOH) x (-445100 J / 1 mol NaOH) = -445100 J of energy.</span>
Answer:
P = 83.16 Watt
Explanation:
Given data:
Mass of box = 2 Kg
velocity of box = 29.7 m/s
Time = 21 sec
Power = ?
Solution:
Formula:
Power = work done/time
Now we will calculate the work done.
W = force × distance ...... (1)
d = speed /time
d = 29.7 m/s× 21 s
d = 623.7 m
Force:
acceleration = 29.7 m/s / 21 s
a = 1.4 m/s²
Force = m×a
Force = 2 kg×1.4 m/s²
Force = 2.8 N
Now we will put the values in equation 1.
W = F × d
W = 2.8 N ×623.7 m
W = 1746.36 Nm
Now for power:
P = W / time
P = 1746 Nm / 21 s
P = 83.16 Watt