Answer:
Equilibrium concentrations of the gases are
Explanation:
We are given that for the equilibrium
Temperature,
Initial concentration of
We have to find the equilibrium concentration of gases.
After certain time
2x number of moles of reactant reduced and form product
Concentration of
At equilibrium
Equilibrium constant
Substitute the values
By solving we get
Now, equilibrium concentration of gases
Answer:
If there reacted 1.5 moles of O2, there will be produced 1.0 mol of Fe2O3
Explanation:
Step 1: Data given
Number of moles oxygen reacted = 1.5 moles
Step 2: The balanced equation
4Fe + 3O2 → 2Fe2O3
Step 3: Calculate moles of Fe2O3
For 4 moles Fe consumed, we need 3 moles of O2 to produce 2 moles of Fe2O3
For 1.5 moles O2 consumed, we'll have 2/3 * 1.5 = 1.0 mol of Fe2O3
If there reacted 1.5 moles of O2, there will be produced 1.0 mol of Fe2O3
Answer:
I guess covalent bond is formed
In a neutral ionic compound, you can determine its sub-scripts by simply flipping the ionic charges and dropping the signs: so AlS would be Al2S3
Answer:
0,07448M of phosphate buffer
Explanation:
sodium monohydrogenphosphate (Na₂HP) and sodium dihydrogenphosphate (NaH₂P) react with HCl thus:
Na₂HP + HCl ⇄ NaH₂P + NaCl <em>(1)</em>
NaH₂P + HCl ⇄ H₃P + NaCl <em>(2)</em>
The first endpoint is due the reaction (1), When all phosphate buffer is as NaH₂P form, begins the second reaction. That means that the second endpoint is due the total concentration of phosphate that is obtained thus:
0,01862L of HCl×= 1,862x10⁻³moles of HCl ≡ moles of phosphate buffer.
The concentration is:
= <em>0,07448M of phosphate buffer</em>
<em></em>
I hope it helps!