The molecule that could diffuse across the plasma membrane is methane (CH4).
<h3>What is diffusion?</h3>
Diffusion is the movement of fluids or substances from regions of high concentration toward regions of lower concentration.
The plasma membrane is the semipermeable membrane that surrounds the cytoplasm of a cell. The semipermeability means that it allows some molecules through but blocks other substances.
The semipermeable plasma membrane readily allows the passage of small hydrophobic and polar molecules.
Therefore, the molecule that could diffuse across the plasma membrane is methane (CH4).
Learn more about semipermeability at: brainly.com/question/1652796
#SPJ1
Answer:
4.59 × 10⁻³⁶ kJ/photon
Explanation:
Step 1: Given and required data
- Wavelength of the violet light (λ): 433 nm
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
- Speed of light (c): 3.00 × 10⁸ m/s
Step 2: Convert "λ" to meters
We will use the conversion factor 1 m = 10⁹ nm.
433 nm × 1 m/10⁹ nm = 4.33 × 10⁷ m
Step 3: Calculate the energy (E) of the photon
We will use the Planck-Einstein's relation.
E = h × c/λ
E = 6.63 × 10⁻³⁴ J.s × (3.00 × 10⁸ m/s)/4.33 × 10⁷ m
E = 4.59 × 10⁻³³ J = 4.59 × 10⁻³⁶ kJ
Volume of Argon V1 = 5.0 L
Pressure of Argon P1 = 2 atm
Final temperature T2 = 30 C = 30 + 273 = 303 K
Volume at final temperature V2= 6 L
Pressure at final temperature P2 = 8 atm
We know that (P1 x V1) / T1 = (P2 x V2) / T2
(2 x 5)/ T1 = (8 x 6)/ 303 => T1 = (10 x 303) / 48
Initial Temperature T1 = 3030 / 48 = 63.12
Initial Temperature = -209. 8 C
The P-H bond is polar and the molecule is asymmetric.
Non-polar bonds cannot produce polar molecules and symmetric bonds result in even distribution of charge, so no net charge is observed.