Answer:
See explanation, some might be graded as wrong if it's an automatic grading system but most
Explanation:
1. lose
2. valence
3. noble (Atoms don't actually always do this, but since the word gas is after the blank, it is the only option)
4. 4
5. have
6. 10
5 and 6 are a little ambiguous and could have many answers
Answer: A property closely related to an atom's mass number is its atomic mass. The atomic mass of a single atom is simply its total mass and is typically expressed in atomic mass units or amu. By definition, an atom of carbon with six neutrons, carbon-12, has an atomic mass of 12 amu.
Hope this helps....... Stay safe and have a Merry Christmas!!!!!!!! :D
The fuel released 90 calories of heat.
Let suppose that water experiments an entirely <em>sensible</em> heating. Hence, the heat released by the fuel is equal to the heat <em>absorbed</em> by the water because of principle of energy conservation. The heat <em>released</em> by the fuel is expressed by the following formula:
(1)
Where:
- Mass of the sample, in grams.
- Specific heat of water, in calories per gram-degree Celsius.
- Temperature change, in degrees Celsius.
If we know that
,
and
, then the heat released by the fuel is:

The fuel released 90 calories of heat.
We kindly invite to check this question on sensible heat: brainly.com/question/11325154
Explanation: Plants using photosynthesis will take in carbon dioxide from the air, bring up water from the roots, and use sunlight as the energetic source to create sugar from water and carbon dioxide. Plants contain a molecule called chlorophyll, and the chlorophyll is what absorbs the sunlight
The total amount of heat required is the sum of all the sensible heat and latent heats involved in bringing the ice to a desired temperature and state. The latent heat of fusion and vaporization of water 333.55 J/g and 2260 J/g, respectively. Solving for the total amount of heat,
total amount of heat = 13.0 g (2.09 J/gC)(12) + 13(333.55 J/g) + 13.0 g (4.18 J/gC)(100 - 0) + (13.0 g)(2260 J/g) + (13 g)(2.01 J/g)(113-100)
= 39815.88 J
= 39.82 kJ